Real-time Modulation Classification Based On Maximum Likelihood

被引:57
作者
Su, Wei [1 ]
Xu, Jefferson L. [2 ]
Zhou, Mengchu [2 ]
机构
[1] USA Commun Elect, RD&E Ctr, Ft Monmouth, NJ 07703 USA
[2] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
关键词
Average likelihood ratio test; modulation classification; software-defined radio;
D O I
10.1109/LCOMM.2008.081107
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper describes a likelihood test based modulation classification method for identifying the modulation scheme of a software-defined radio (SDR) in real-time without pilot symbols between transmitters and receivers. Unlike the prior art, the paper converts an unknown signal symbol to an address of the look-up table (LUT), loads the pre-calculated values of the test functions for the likelihood ratio test, and produces the estimated modulation scheme in real-time. The statistical performance of the LUT based classifier is studied. Simulation results are presented to confirm the theoretical analysis.
引用
收藏
页码:801 / 803
页数:3
相关论文
共 10 条
[1]   Survey of automatic modulation classification techniques: classical approaches and new trends [J].
Dobre, O. A. ;
Abdi, A. ;
Bar-Ness, Y. ;
Su, W. .
IET COMMUNICATIONS, 2007, 1 (02) :137-156
[2]   Large-sample modulation classification using Hellinger Representation [J].
Donoho, DL ;
Huo, XM .
FIRST IEEE SIGNAL PROCESSING WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 1997, :133-136
[3]  
LAY NE, 1995, MILCOM SAN DIEG CA, V1, P170
[4]   Classification of digital modulations by MCMC sampling [J].
Lesage, W ;
Tourneret, JY ;
Djuric, PM .
2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, :2553-2556
[5]  
Panagiotou P, 2000, IEEE MILIT COMMUN C, P670, DOI 10.1109/MILCOM.2000.904013
[6]   A comparison of SNR estimation techniques for the AWGN channel [J].
Pauluzzi, DR ;
Beaulieu, NC .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (10) :1681-1691
[7]  
Su W., 2003, P INT S ADV RAD TECH, P81
[8]  
Tadaion A.A., 2005, P IEEE CAN C EL COMP, P151
[9]  
Wei W., 1995, P C REC 29 AX C SIGN, V2, P1132, DOI [10.1109/ACSSC.1995.540876, DOI 10.1109/ACSSC.1995.540876]
[10]  
Widrow B., 1956, IRE Trans. Circuit Theory, V3, P266, DOI DOI 10.1109/TCT.1956.1086334