Inverse 1-median problem on trees under weighted Hamming distance

被引:54
作者
Guan, Xiucui [1 ]
Zhang, Binwu [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Hohai Univ, Dept Math & Phys, Changzhou 213022, Peoples R China
关键词
Inverse 1-median problem; Tree; Weighted Hamming distance; Binary search; 0-1 knapsack problem; CENTER LOCATION PROBLEM; OPTIMIZATION PROBLEMS; L(INFINITY) NORM;
D O I
10.1007/s10898-011-9742-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The inverse 1-median problem consists in modifying the weights of the customers at minimum cost such that a prespecified supplier becomes the 1-median of modified location problem. A linear time algorithm is first proposed for the inverse problem under weighted l (a) norm. Then two polynomial time algorithms with time complexities O(n log n) and O(n) are given for the problem under weighted bottleneck-Hamming distance, where n is the number of vertices. Finally, the problem under weighted sum-Hamming distance is shown to be equivalent to a 0-1 knapsack problem, and hence is -hard.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 21 条
[1]   Inverse 1-center location problems with edge length augmentation on trees [J].
Alizadeh, Behrooz ;
Burkard, Rainer E. ;
Pferschy, Ulrich .
COMPUTING, 2009, 86 (04) :331-343
[2]   AN ALGORITHM FOR LARGE ZERO-ONE KNAPSACK-PROBLEMS [J].
BALAS, E ;
ZEMEL, E .
OPERATIONS RESEARCH, 1980, 28 (05) :1130-1154
[3]   Inverse median location problems with variable coordinates [J].
Bonab, Fahimeh Baroughi ;
Burkard, Rainer E. ;
Alizadeh, Behrooz .
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2010, 18 (03) :365-381
[4]  
Burkard R.E., 2004, Discrete Optimization, V1, P23, DOI [10.1016/j.disopt.2004.03.003, DOI 10.1016/J.DISOPT.2004.03.003]
[5]   The inverse 1-median problem on a cycle [J].
Burkard, Rainer E. ;
Pleschiutschnig, Carmen ;
Zhang, Jianzhong .
DISCRETE OPTIMIZATION, 2008, 5 (02) :242-253
[6]   The inverse Fermat-Weber problem [J].
Burkard, Rainer E. ;
Galavii, Mohammadreza ;
Gassner, Elisabeth .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) :11-17
[7]   The complexity analysis of the inverse center location problem [J].
Cai, MC ;
Yang, XG ;
Zhang, JZ .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (02) :213-218
[8]   A Class of Constrained Inverse Bottleneck Optimization Problems under Weighted Hamming Distance [J].
Cao, Yangbo ;
Guan, Xiucui .
INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, :859-863
[9]   Some inverse optimization problems under the Hamming distance [J].
Duin, CW ;
Volgenant, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (03) :887-899
[10]  
Galavii M, 2008, THESIS GRAZ U TECHNO