A Gromov-Winkelmann type theorem for flexible varieties

被引:20
作者
Flenner, Hubert [1 ]
Kaliman, Shulim [2 ]
Zaidenberg, Mikhail [3 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Geb NA 2-72,Univ Str 150, D-44780 Bochum, Germany
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Univ Grenoble 1, Inst Fournier, CNRS UJF, UMR 5582, BP 74, F-38402 St Martin Dheres, France
关键词
Affine varieties; group actions; one-parameter subgroups; transitivity;
D O I
10.4171/JEMS/646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An affine variety X of dimension >= 2 is called flexible if its special automorphism group SAut (X) acts transitively on the smooth locus X-reg. Recall that SAut. (X) is the subgroup of the automorphism group Aut. (X) generated by all one-parameter unipotent subgroups [2]. Given a normal, flexible, affine variety X and a closed subvariety Y in X of codimension at least 2, we show that the pointwise stabilizer subgroup of Y in the group SAut. (X) acts infinitely transitively on the complement X \ Y, that is, m-transitively for any m >= 1. More generally we prove such a result for any quasi-affine variety X and codimension >= 2 subset Y of X. In the particular case of X = A(n), n >= 2, this yields a theorem of Gromov and Winkelmann [8], [18].
引用
收藏
页码:2483 / 2510
页数:28
相关论文
共 20 条
[11]  
GROMOV MIKHAEL, 1986, ERGEBNISSE MATH IHRE, V9, DOI 10.1007/978-3-662-02267-2
[12]  
Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi
[13]   Affine modifications and affine hypersurfaces with a very transitive automorphism group [J].
Kaliman, S ;
Zaidenberg, M .
TRANSFORMATION GROUPS, 1999, 4 (01) :53-95
[14]   Criteria for the density property of complex manifolds [J].
Kaliman, Shulim ;
Kutzschebauch, Frank .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :71-87
[15]  
Koll ar J., 1996, RATIONAL CURVES ALGE, V32
[16]   Transitivity of Automorphism Groups of Gizatullin Surfaces [J].
Kovalenko, Sergei .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) :11433-11484
[17]   A NOTE ON AUTOMORPHISM GROUPS OF ALGEBRAIC VARIETIES [J].
RAMANUJAM, CP .
MATHEMATISCHE ANNALEN, 1964, 156 (01) :25-33
[18]   Invariant rings and quasiaffine quotients [J].
Winkelmann, J .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (01) :163-174
[19]   ON AUTOMORPHISMS OF COMPLEMENTS OF ANALYTIC SUBSETS IN CN [J].
WINKELMANN, J .
MATHEMATISCHE ZEITSCHRIFT, 1990, 204 (01) :117-127
[20]   The reduction of the singularities of an algebraic surface [J].
Zariski, O .
ANNALS OF MATHEMATICS, 1939, 40 :639-689