A Gromov-Winkelmann type theorem for flexible varieties

被引:20
作者
Flenner, Hubert [1 ]
Kaliman, Shulim [2 ]
Zaidenberg, Mikhail [3 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Geb NA 2-72,Univ Str 150, D-44780 Bochum, Germany
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Univ Grenoble 1, Inst Fournier, CNRS UJF, UMR 5582, BP 74, F-38402 St Martin Dheres, France
关键词
Affine varieties; group actions; one-parameter subgroups; transitivity;
D O I
10.4171/JEMS/646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An affine variety X of dimension >= 2 is called flexible if its special automorphism group SAut (X) acts transitively on the smooth locus X-reg. Recall that SAut. (X) is the subgroup of the automorphism group Aut. (X) generated by all one-parameter unipotent subgroups [2]. Given a normal, flexible, affine variety X and a closed subvariety Y in X of codimension at least 2, we show that the pointwise stabilizer subgroup of Y in the group SAut. (X) acts infinitely transitively on the complement X \ Y, that is, m-transitively for any m >= 1. More generally we prove such a result for any quasi-affine variety X and codimension >= 2 subset Y of X. In the particular case of X = A(n), n >= 2, this yields a theorem of Gromov and Winkelmann [8], [18].
引用
收藏
页码:2483 / 2510
页数:28
相关论文
共 20 条
[1]  
[Anonymous], ERGEB MATH GRENZGEB
[2]  
[Anonymous], ENCY MATH SCI
[3]  
[Anonymous], ALGEBRAIC GEOMETRY
[4]  
[Anonymous], ERGEB MATH GRENZGEB
[5]  
[Anonymous], 1995, Graduate Texts in Mathematics
[6]   FLEXIBLE VARIETIES AND AUTOMORPHISM GROUPS [J].
Arzhantsev, I. ;
Flenner, H. ;
Kaliman, S. ;
Kutzschebauch, F. ;
Zaidenberg, M. .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (04) :767-823
[7]   Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity [J].
Arzhantsev, I. V. ;
Zaidenberg, M. G. ;
Kuyumzhiyan, K. G. .
SBORNIK MATHEMATICS, 2012, 203 (07) :923-949
[8]   Infinite transitivity on universal torsors [J].
Arzhantsev, Ivan ;
Perepechko, Alexander ;
Suess, Hendrik .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 :762-778
[9]  
Bogomolov F., 2013, Birational geometry, rational curves, and arithmetic, P77
[10]  
Gromov M., 1989, J AM MATH SOC, V2, P851