Exact Solutions of the Nonlocal Nonlinear Schrodinger Equation with a Perturbation Term

被引:1
作者
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2018年 / 73卷 / 03期
关键词
Darboux Transformation; Nonlocal Nonlinear Schrodinger Equation; PT Symmetry; SOLITONS; WAVES; DYNAMICS; MEDIA;
D O I
10.1515/zna-2017-0465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Analytical solutions of both the nonlinear Schrodinger equation (NLSE) and NLSE with a perturbation term have been attained. Besides, analytical solutions of nonlocal NLSE have also been obtained. In this paper, the nonlocal NLSE with a perturbation term is discussed. By virtue of the dependent variable substitution, trilinear forms of this equation is attained. Lax pairs and Darboux transformation of this equation are obtained. Via the Darboux transformation, two kinds solutions of this equation with the different seed solutions are attained.
引用
收藏
页码:225 / 228
页数:4
相关论文
共 22 条
  • [1] Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
  • [2] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [3] NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (02) : 125 - 127
  • [4] Agrawal G., 2012, Nonlinear Fiber Optics
  • [5] Rogue waves and rational solutions of the nonlinear Schroumldinger equation
    Akhmediev, Nail
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [6] EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    AKHMEDIEV, NN
    ELEONSKII, VM
    KULAGIN, NE
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) : 809 - 818
  • [7] On decompositions of the KdV 2-soliton
    Benes, N
    Kasman, A
    Young, K
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (02) : 179 - 200
  • [8] Physical dynamics of quasi-particles in nonlinear wave equations
    Christov, Ivan
    Christov, C. I.
    [J]. PHYSICS LETTERS A, 2008, 372 (06) : 841 - 848
  • [9] Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation
    Dai, Chao-Qing
    Wang, Yu
    Liu, Jiu
    [J]. NONLINEAR DYNAMICS, 2016, 84 (03) : 1157 - 1161
  • [10] Dai CQ, 2016, NONLINEAR DYNAM, V83, P2453, DOI 10.1007/s11071-015-2493-3