A Generalized q-Mittag-Leffler Function by q-Captuo Fractional Linear Equations

被引:30
作者
Abdeljawad, Thabet [1 ]
Benli, Betul [1 ]
Baleanu, Dumitru [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
CALCULUS;
D O I
10.1155/2012/546062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some Caputo q-fractional difference equations are solved. The solutions are expressed by means of a new introduced generalized type of q-Mittag-Leffler functions. The method of successive approximation is used to obtain the solutions. The obtained q-version of Mittag-Leffler function is thought as the q-analogue of the one introduced previously by Kilbas and Saigo (1995).
引用
收藏
页数:11
相关论文
共 34 条
[1]   Vartiational Optimal-Control Problems with Delayed Arguments on Time Scales [J].
Abdeljawad , Thabet ;
Jarad, Fahd ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2009,
[2]  
ABDELJAWAD T, 2008, J ARTS SCI, V9, P1
[3]  
Abdeljawad T, 2011, J COMPUT ANAL APPL, V13, P574
[4]   Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4682-4688
[5]  
Al-Salam WA., 1952, P AM MATH SOC, V17, P182, DOI DOI 10.2307/2035378
[6]  
Aldwoah K.A., 2011, International Journal of Mathematics and Statistics, V9, P106
[7]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[8]  
ALSALAM WA, 1975, PAC J MATH, V60, P1
[9]  
[Anonymous], 1989, ELLIS HORWOOD SERIES
[10]  
Ates I, 2009, INT J NONLIN SCI NUM, V10, P877