Further Results on the Instability of Solutions of Certain Nonlinear Vector Differential Equations of Fifth Order

被引:0
作者
Tunc, C. [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2008年 / 2卷 / 01期
关键词
Instability; Lyapunov's second (or direct) method; nonlinear differential equations of fifth order;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Lyapunov's second method [13], some new results are established, which insure that the zero solution of non-linear vector differential equations of the form X((5)) + Psi((X) over dot, (X) doubt over dot) (X)triple over dot> + Phi(X, (X) over dot, (X) doubtle over dotm (X) triple over dot, X((4))) + Theta((X) over dot) + F(X) = 0 is unstable.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 36 条
[1]  
[Anonymous], ELECT J DIFFERENTIAL
[2]  
Ezeilo J. O. C., 1978, B LOND MATH SOC, V10, P184
[3]   AN INSTABILITY THEOREM FOR A CERTAIN 6TH ORDER DIFFERENTIAL-EQUATION [J].
EZEILO, JOC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 32 (JAN) :129-133
[4]   FURTHER INSTABILITY THEOREM FOR A CERTAIN 5TH ORDER DIFFERENTIAL-EQUATION [J].
EZEILO, JOC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 86 (NOV) :491-493
[6]  
EZEILO JOC, 1979, ATTI ACCAD NAZ LINCE, V66, P239
[7]   On the stability of nonautonomous systems [J].
Iggidr, A ;
Sallet, G .
AUTOMATICA, 2003, 39 (01) :167-171
[8]  
KRASOVSKII NN, 1955, DOKL AKAD NAUK SSSR+, V101, P17
[9]  
LI WJ, 1990, J XINJIANG U NATUR S, V7, P7
[10]  
LI WJ, 2000, J XINJIANG U NATUR S, V17, P1