Research on Parallel Hybrid Genetic Algorithm based on Multi-group in Job Shop Scheduling
被引:1
作者:
Yan, Cunliang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R ChinaShanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R China
Yan, Cunliang
[1
]
Shi, Weifeng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R ChinaShanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R China
Shi, Weifeng
[1
]
Zhao, Ruilin
论文数: 0引用数: 0
h-index: 0
机构:Shanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R China
Zhao, Ruilin
机构:
[1] Shanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R China
To avoid premature and sensitivity of operator parameters selecting of Standard genetic algorithm (SGA) and simulated annealing genetic algorithm (SAGA), a parallel hybrid genetic algorithm based on multi-group (hybrid GA) is presented. The algorithm combines the ideas of parallel computation, simulated annealing and genetic algorithm, and uses orthogonal test table selecting operator parameters to improve the efficiency and robust of the algorithm. And benchmark example of job shop scheduling problem (JSP) is used to validate the effectiveness of the algorithm. Results show the hybrid genetic algorithm converges quickly with small impact to operator parameters.
引用
收藏
页码:2227 / +
页数:2
相关论文
共 7 条
[1]
Fisher H., 1963, INDUSTR SCHED, V45, P225, DOI DOI 10.1109/ICAL.2009.5262867