Research on Parallel Hybrid Genetic Algorithm based on Multi-group in Job Shop Scheduling

被引:1
作者
Yan, Cunliang [1 ]
Shi, Weifeng [1 ]
Zhao, Ruilin
机构
[1] Shanghai Maritime Univ, Logist Engn Coll, 1550 Pu Dong Da Dao, Shanghai, Peoples R China
来源
ADVANCED COMPOSITE MATERIALS, PTS 1-3 | 2012年 / 482-484卷
关键词
Genetic Algorithm; Job Shop Scheduling; Simulated Annealing Genetic Algorithm; Orthogonal Test;
D O I
10.4028/www.scientific.net/AMR.482-484.2227
中图分类号
TB33 [复合材料];
学科分类号
摘要
To avoid premature and sensitivity of operator parameters selecting of Standard genetic algorithm (SGA) and simulated annealing genetic algorithm (SAGA), a parallel hybrid genetic algorithm based on multi-group (hybrid GA) is presented. The algorithm combines the ideas of parallel computation, simulated annealing and genetic algorithm, and uses orthogonal test table selecting operator parameters to improve the efficiency and robust of the algorithm. And benchmark example of job shop scheduling problem (JSP) is used to validate the effectiveness of the algorithm. Results show the hybrid genetic algorithm converges quickly with small impact to operator parameters.
引用
收藏
页码:2227 / +
页数:2
相关论文
共 7 条