EBSD-coupled indentation: nanoscale mechanics of lithium metal

被引:19
作者
Aspinall, Jack [1 ,2 ]
Armstrong, David E. J. [1 ,2 ]
Pasta, Mauro [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Faraday Inst, Quad One, Didcot OX11 0RA, England
关键词
Mechanics; Lithium dendrite; Nanoindentation; EBSD map; Solid state; surface preparation; CRYSTAL ELASTIC-CONSTANTS; TEMPERATURE-DEPENDENCE; SOLID ELECTROLYTES; STRAIN-RATE; LI; NANOINDENTATION; MICROSCOPY; BEHAVIOR; HARDNESS; MODULUS;
D O I
10.1016/j.mtener.2022.101183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fracture of ceramic solid electrolytes, driven by the plating of lithium within cracks, has been identified as one of the fundamental issues to successfully develop solid-state batteries. Understanding the mechanics of lithium at the nanoscale is therefore essential. In this work, the elastic and plastic properties of lithium are measured by nanoindentation within an electron microscope. Lithium metal samples are characterized by electron backscattered diffraction before and after indentation to under-stand the dependence of the mechanical properties on crystallographic orientation and determine the stiffness tensor components, moduli, and Poisson's ratio using a method first proposed by Vlassak and Nix. The measured stiffness tensor components are C11 = 13.3, C12 = 11.2, and C44 = 8.8 GPa. Hardness measurements show a clear size effect with hardness in excess of 100 MPa observed for indent depths below 300 nm, which could contribute toward observed lithium filament propagation. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 46 条
  • [1] [Anonymous], 1922, Proc. Am. Acad. Arts Sci.
  • [2] Thermodynamic Reassessment of the Gallium-Lithium Phase Diagram
    Azza, H.
    Selhaoui, N.
    Iddaoudi, A.
    Bouirden, L.
    [J]. JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2017, 38 (05) : 788 - 795
  • [3] Electron Backscatter Diffraction Applied to Lithium Sheets Prepared by Broad Ion Beam Milling
    Brodusch, Nicolas
    Zaghib, Karim
    Gauvin, Raynald
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2015, 78 (01) : 30 - 39
  • [4] The relationship between hardness and yield stress in irradiated austenitic and ferritic steels
    Busby, JT
    Hash, MC
    Was, GS
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2005, 336 (2-3) : 267 - 278
  • [5] TEMPERATURE AND PRESSURE-DEPENDENCE OF SINGLE-CRYSTAL ELASTIC-CONSTANTS OF LI-6 AND NATURAL LITHIUM
    FELICE, RA
    TRIVISONNO, J
    SCHUELE, DE
    [J]. PHYSICAL REVIEW B, 1977, 16 (12): : 5173 - 5184
  • [6] Mechanical properties of metallic lithium: from nano to bulk scales
    Fincher, Cole D.
    Ojeda, Daniela
    Zhang, Yuwei
    Pharr, George M.
    Pharr, Matt
    [J]. ACTA MATERIALIA, 2020, 186 : 215 - 222
  • [7] Tracking lithium penetration in solid electrolytes in 3D by in-situ synchrotron X-ray computed tomography
    Hao, Shuai
    Daemi, Sohrab R.
    Heenan, Thomas M. M.
    Du, Wenjia
    Tan, Chun
    Storm, Malte
    Rau, Christoph
    Brett, Dan J. L.
    Shearing, Paul R.
    [J]. NANO ENERGY, 2021, 82
  • [8] Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus
    Herbert, Erik G.
    Hackney, Stephen A.
    Dudney, Nancy J.
    Phani, P. Sudharshan
    [J]. JOURNAL OF MATERIALS RESEARCH, 2018, 33 (10) : 1335 - 1346
  • [9] THE DEFORMATION OF LITHIUM, SODIUM AND POTASSIUM AT LOW TEMPERATURES - TENSILE AND RESISTIVITY EXPERIMENTS
    HULL, D
    ROSENBERG, HM
    [J]. PHILOSOPHICAL MAGAZINE, 1959, 4 (39): : 303 - 315
  • [10] Effect of microcracking on ionic conductivity in LATP
    Jackman, Spencer D.
    Cutler, Raymond A.
    [J]. JOURNAL OF POWER SOURCES, 2012, 218 : 65 - 72