The first integral method for Wu-Zhang system with conformable time-fractional derivative

被引:413
作者
Eslami, Mostafa [1 ]
Rezazadeh, Hadi [2 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] Univ Guilan, Sch Math Sci, Dept Appl Math, Rasht, Iran
关键词
Conformable fractional derivative; First integral method; Wu-Zhang system;
D O I
10.1007/s10092-015-0158-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the first integral method is used to construct exact solutions of the time-fractional Wu-Zhang system. Fractional derivatives are described by conformable fractional derivative. This method is based on the ring theory of commutative algebra. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 13 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
Biswas A, 2014, ROM J PHYS, V59, P433
[5]  
Ding T.R., 1996, Ordinary Differential Equations
[6]   On the fractional-order logistic equation [J].
El-Sayed, A. M. A. ;
El-Mesiry, A. E. M. ;
El-Saka, H. A. A. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (07) :817-823
[7]   On explicit exact solutions to the compound Burgers-KdV equation [J].
Feng, ZS .
PHYSICS LETTERS A, 2002, 293 (1-2) :57-66
[8]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[9]   On the representation of fractional Brownian motion as an integral with respect to (dt)a [J].
Jumarie, G .
APPLIED MATHEMATICS LETTERS, 2005, 18 (07) :739-748
[10]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70