Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution

被引:258
作者
Li, Shuang [1 ,2 ]
Tuo, Ping [1 ]
Xie, Junfeng [1 ]
Zhang, Xiaodong [1 ]
Xu, Jianguang [3 ]
Bao, Jian [1 ]
Pan, Bicai [1 ]
Xie, Yi [1 ]
机构
[1] Univ Sci & Technol China, iCHEM, CAS Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] China Three Gorges Univ, Key Lab Inorgan Nonmet Crystalline & Energy Conve, Coll Mat & Chem Engn, Yichang 443002, Peoples R China
[3] Yancheng Inst Technol, Sch Mat Sci & Engn, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MXenes; Ultrathin nanosheets; Surface F terminations; Hydrogen evolution reaction; CARBIDE; CAPACITANCE; CATALYSTS; PHOSPHIDE;
D O I
10.1016/j.nanoen.2018.03.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring efficient noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) is of great importance to solve the energy crisis. The family of two-dimension transition metal carbides, MXenes, has received a small amount of research, including the reactivity and number of active sites, relative to their extraordinary potential as electrocatalysts for HER. Herein, a model of atomically-thin Ti2CTx (where T-x denotes the surface termination groups; -F, -O, -OH) nanosheets with the rich surface fluorine termination groups is put forward to achieve synergistic regulations of both reactivity and number of active sites. Theoretical calculations and electrochemical tests show that the rich surface F terminations can promote the proton adsorption kinetics and reduce the charge-transfer resistance of the Ti2CTx nanosheets, leading to the increased reactivity of active sites and favorable electrode kinetics. Besides, the ultrathin thickness of the Ti2CTx nanosheets offers high-density active sites for HER. As expected, the rich F-terminated Ti2CTx nanosheets exhibit a small onset overpotential of 75 mV and a large exchange current density of 0.41 mA cm(-2). Our discovery adds to the growing potential of MXene-based materials for application in hydrogen evolution reaction.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 42 条
[1]  
Bao J., 2015, ANGEW CHEM INT EDIT, V54, P1
[2]   High capacitance of surface-modified 2D titanium carbide in acidic electrolyte [J].
Dall'Agnese, Yohan ;
Lukatskaya, Maria R. ;
Cook, Kevin M. ;
Taberna, Pierre-Louis ;
Gogotsi, Yury ;
Simon, Patrice .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 48 :118-122
[3]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[4]   2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction [J].
Gao, Guoping ;
O'Mullane, Anthony P. ;
Du, Aijun .
ACS CATALYSIS, 2017, 7 (01) :494-500
[5]   Synthesis and characterization of two-dimensional Nb4C3 (MXene) [J].
Ghidiu, M. ;
Naguib, M. ;
Shi, C. ;
Mashtalir, O. ;
Pan, L. M. ;
Zhang, B. ;
Yang, J. ;
Gogotsi, Y. ;
Billinge, S. J. L. ;
Barsoum, M. W. .
CHEMICAL COMMUNICATIONS, 2014, 50 (67) :9517-9520
[6]  
Halim J., 2016, DISS ABSTR INT
[7]   Synthesis and Characterization of 2D Molybdenum Carbide (MXene) [J].
Halim, Joseph ;
Kota, Sankalp ;
Lukatskaya, Maria R. ;
Naguib, Michael ;
Zhao, Meng-Qiang ;
Moon, Eun Ju ;
Pitock, Jeremy ;
Nanda, Jagjit ;
May, Steven J. ;
Gogotsi, Yury ;
Barsoum, Michel W. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (18) :3118-3127
[8]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[9]   Nitrogen-Doped Porous Molybdenum Carbide and Phosphide Hybrids on a Carbon Matrix as Highly Effective Electrocatalysts for the Hydrogen Evolution Reaction [J].
Huang, Yichao ;
Ge, Jingxuan ;
Hu, Jun ;
Zhang, Jiangwei ;
Hao, Jian ;
Wei, Yongge .
ADVANCED ENERGY MATERIALS, 2018, 8 (06)
[10]   First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction [J].
Kong, Desheng ;
Cha, Judy J. ;
Wang, Haotian ;
Lee, Hye Ryoung ;
Cui, Yi .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3553-3558