Simulation of Bifacial and Monofacial Silicon Solar Cell Short-Circuit Current Density Under Measured Spectro-Angular Solar Irradiance

被引:17
作者
Pal, Shweta [1 ]
Reinders, Angele [2 ]
Saive, Rebecca [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol Inorgan Mat SCI, NL-7522 NB Enschede, Netherlands
[2] Univ Twente, Dept Design Prod & Management, Fac Engn Technol, NL-7522 NB Enschede, Netherlands
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2020年 / 10卷 / 06期
关键词
Current measurement; Photovoltaic cells; Sun; Silicon; Short-circuit currents; Density measurement; Clouds; Bifacial cells; diffuse irradiance; PV performance; silicon solar cells; solar spectra; spectral and angular irradiance; spectro-angular irradiance; TEMPERATURE-DEPENDENCE; PHOTOVOLTAIC MODULES; OPTICAL-CONSTANTS; PERFORMANCE; POWER; IMPACT; ALBEDO; TRANSMITTANCE; PREDICTIONS; PARAMETERS;
D O I
10.1109/JPHOTOV.2020.3026141
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this article, we simulated the performance of bifacial and monofacial silicon heterojunction solar cells under measured spectro-angular solar irradiance. We developed a new setup and procedure to measure spectro-angular irradiance over a wide range of orientations. Measurements were executed in Enschede, the Netherlands (52.23 degrees N, 6.85 degrees E). Using this measured multi-dimensional input irradiance along with SunSolve simulated external quantum efficiency for various cells, we determined the short-circuit current density of bifacial and monofacial silicon heterojunction solar cells. We conclude that monofacial cells perform marginally better than bifacial cells for front-side illumination (up to 3.0% more for direct sun) and bifacial cells perform significantly better than monofacial cells (higher output ranging from 20.1% to 68.1%), under diffuse irradiance. We compared our results with a well-monitored roof-top solar module set-up and found good agreement for clear sky days (accuracy 1.1%-8.5%).
引用
收藏
页码:1803 / 1815
页数:13
相关论文
共 57 条
  • [1] [Anonymous], 1979, SOLMET HOURL SOL RAD
  • [2] Influences of spectrum change to 3-junction concentrator cells
    Araki, K
    Yamaguchi, M
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 75 (3-4) : 707 - 714
  • [3] ASTM, 1987, ASTM E891-87.
  • [4] Measurement and analysis of angular response of bare and encapsulated silicon solar cells
    Balenzategui, JL
    Chenlo, F
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 86 (01) : 53 - 83
  • [5] Effects of spectral albedo on solar photovoltaic devices
    Brennan, M. P.
    Abramase, A. L.
    Andrews, R. W.
    Pearce, J. M.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 : 111 - 116
  • [6] Nanophotonic light management for perovskite-silicon tandem solar cells
    Chen, Duote
    Manley, Phillip
    Tockhorn, Philipp
    Eisenhauer, David
    Koeppel, Grit
    Hammerschmidt, Martin
    Burger, Sven
    Albrecht, Steve
    Becker, Christiane
    Jaeger, Klaus
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2018, 8 (02):
  • [7] Angular Dependence of Photonic Crystal Coupled to Photovoltaic Solar Cell
    Delgado-Sanchez, J. M.
    Lillo-Bravo, I.
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [8] Estimating and parameterizing mismatch power loss in bifacial photovoltaic systems
    Deline, Chris
    Pelaez, Silvana Ayala
    MacAlpine, Sara
    Olalla, Carlos
    [J]. PROGRESS IN PHOTOVOLTAICS, 2020, 28 (07): : 691 - 703
  • [9] Einhaus L., 2020, P 47 IEEE PHOT SPEC
  • [10] SUNCALCULATOR: A program to calculate the angular and spectral distribution of direct and diffuse solar radiation
    Ernst, Marco
    Holst, Hendrik
    Winter, Matthias
    Altermatt, Pietro P.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 913 - 922