A potential generalization of some canonical Riemannian metrics

被引:2
作者
Catino, Giovanni [1 ]
Mastrolia, Paolo [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
Canonical metrics; Einstein metrics; Harmonic curvature; Yamabe metrics; Ricci solitons; MANIFOLDS; CURVATURE; SOLITONS;
D O I
10.1007/s10455-019-09649-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study new classes of Riemannian manifolds endowed with a smooth potential function, including in a general framework classical canonical structures such as Einstein, harmonic curvature and Yamabe metrics, and, above all, gradient Ricci solitons. For the most rigid cases, we give a complete classification, while for the others we provide rigidity and obstruction results, characterizations and nontrivial examples. In the final part of the paper, we also describe the nongradient version of this construction.
引用
收藏
页码:719 / 748
页数:30
相关论文
共 53 条
[41]  
LEE JM, 1991, BULL AMER MATH SOC N, V17, P37
[42]   On the long-time behavior of type-III Ricci flow solutions [J].
Lott, John .
MATHEMATISCHE ANNALEN, 2007, 339 (03) :627-666
[43]  
MERTON G, 1973, PROC AMER MATH SOC, V141, P3265
[44]   Noncompact shrinking four solitons with nonnegative curvature [J].
Naber, Aaron .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :125-153
[45]  
Ni L, 2008, MATH RES LETT, V15, P941
[46]   A THEOREM ON CURVATURE TENSOR FIELDS [J].
NOMIZU, K ;
OZEKI, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (02) :206-&
[47]  
Perelman G., math/0211159
[48]   On the classification of gradient Ricci solitons [J].
Petersen, Peter ;
Wylie, William .
GEOMETRY & TOPOLOGY, 2010, 14 (04) :2277-2300
[49]   THEOREM ON RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE OPERATOR [J].
TACHIBANA, S .
PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (04) :301-302
[50]  
TANNO S, 1972, ANN MAT PUR APPL, V96, P233