A potential generalization of some canonical Riemannian metrics

被引:2
作者
Catino, Giovanni [1 ]
Mastrolia, Paolo [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
Canonical metrics; Einstein metrics; Harmonic curvature; Yamabe metrics; Ricci solitons; MANIFOLDS; CURVATURE; SOLITONS;
D O I
10.1007/s10455-019-09649-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study new classes of Riemannian manifolds endowed with a smooth potential function, including in a general framework classical canonical structures such as Einstein, harmonic curvature and Yamabe metrics, and, above all, gradient Ricci solitons. For the most rigid cases, we give a complete classification, while for the others we provide rigidity and obstruction results, characterizations and nontrivial examples. In the final part of the paper, we also describe the nongradient version of this construction.
引用
收藏
页码:719 / 748
页数:30
相关论文
共 53 条
[1]  
Alias L. J., 2016, SPRINGER MONOGRAPHS
[2]  
[Anonymous], 1977, Tensor N. S.
[3]  
Aubin T., 1970, J. Differential Geometry, V4, P383
[5]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[6]   A class of three-dimensional Ricci solitons [J].
Baird, Paul .
GEOMETRY & TOPOLOGY, 2009, 13 :979-1015
[7]  
Besse A.L, 2008, CLASSICS MATH
[8]  
BLAND J, 1946, TRANS AMER MATH SOC, V316, P433
[9]  
BOHM C, 1997, ANN MATH 2, V167, P1079
[10]  
BOURGUIGNON J, 1986, INVENT MATH, V63, P263