Minimal supersolutions of BSDEs with lower semicontinuous generators

被引:11
作者
Heyne, Gregor [1 ]
Kupper, Michael [1 ]
Mainberger, Christoph [1 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
关键词
Supersolutions of backward stochastic differential equations; Semimartingale convergence; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1214/12-AIHP523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.
引用
收藏
页码:524 / 538
页数:15
相关论文
共 16 条
[11]   Backward stochastic differential equations and partial differential equations with quadratic growth [J].
Kobylanski, M .
ANNALS OF PROBABILITY, 2000, 28 (02) :558-602
[12]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[13]  
Peng S.-G., 1997, Pitman Research Notes in Mathematics Series, V364, P141
[14]   The smallest g-supermartingale and reflected BSDE with single and double L2 obstacles [J].
Peng, SG ;
Xu, MY .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :605-630
[15]   Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type [J].
Peng, SG .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) :473-499
[16]  
Protter P., 2005, STOCHASTIC INTEGRATI, DOI [DOI 10.1007/978-3-662-10061-5, 10.1007/978-3-662-10061-5]