On necessary conditions for the weak consistency of minimum L-1-norm estimates in linear models

被引:3
作者
Bai, ZD
Wu, Y
机构
[1] NATL SUN YAT SEN UNIV,DEPT MATH APPL,KAOHSIUNG 80424,TAIWAN
[2] YORK UNIV,DEPT MATH & STAT,N YORK,ON M3J 1P3,CANADA
关键词
minimum L-1 norm estimate; weak consistency; linear regression model; necessary condition;
D O I
10.1016/S0167-7152(96)00182-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the model y(i) = x'(i) beta(0) + e(i), i = 1,..., n. Under very weak conditions on the error distributions, it is shown that inf(\mu\=1) Sigma(i=1)(infinity) \mu'x(i)\ = infinity is a necessary condition for the weak consistency of a minimum L-1-norm estimate of beta(0), which cannot be further improved.
引用
收藏
页码:193 / 199
页数:7
相关论文
共 16 条