Geometry Induced by a Generalization of Renyi Divergence

被引:13
作者
de Souza, David C. [1 ]
Vigelis, Rui F. [2 ]
Cavalcante, Charles C. [3 ]
机构
[1] Inst Fed Ceara, Campus Maracanau, BR-61939140 Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Comp Engn Sch, Campus Sobral, BR-62010560 Sobral, Brazil
[3] Univ Fed Ceara, Dept Teleinformat Engn, BR-60455900 Fortaleza, Ceara, Brazil
来源
ENTROPY | 2016年 / 18卷 / 11期
关键词
Renyi divergence; phi-function; phi-divergence; phi-family; statistical manifold; information geometry; DEFORMED EXPONENTIAL-FAMILIES; SPACE;
D O I
10.3390/e18110407
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a generalization of Renyi divergence, and then we investigate its induced geometry. This generalization is given in terms of a phi-function, the same function that is used in the definition of non-parametric phi-families. The properties of phi-functions proved to be crucial in the generalization of Renyi divergence. Assuming appropriate conditions, we verify that the generalized Renyi divergence reduces, in a limiting case, to the phi-divergence. In generalized statistical manifold, the phi-divergence induces a pair of dual connections relation D (a) = 1 a 2 D (1) + 1 + a 2 D (1), with alpha is an element of [-1, 1].
引用
收藏
页数:16
相关论文
共 33 条
  • [21] An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one
    Pistone, G
    Sempi, C
    [J]. ANNALS OF STATISTICS, 1995, 23 (05) : 1543 - 1561
  • [22] Rnyi A., 1961, Technical report, Vvol 4, P547
  • [23] New results on mixture and exponential models by Orlicz spaces
    Santacroce, Marina
    Siri, Paola
    Trivellato, Barbara
    [J]. BERNOULLI, 2016, 22 (03) : 1431 - 1447
  • [24] Renyi Divergence and Kullback-Leibler Divergence
    van Erven, Tim
    Harremoes, Peter
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 3797 - 3820
  • [25] New Metric and Connections in Statistical Manifolds
    Vigelis, Rui F.
    de Souza, David C.
    Cavalcante, Charles C.
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 222 - 229
  • [26] On φ-Families of Probability Distributions
    Vigelis, Rui F.
    Cavalcante, Charles C.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) : 870 - 884
  • [27] Vigelis RF, 2016, SIGNALS AND IMAGES: ADVANCES AND RESULTS IN SPEECH, ESTIMATION, COMPRESSION, RECOGNITION, FILTERING, AND PROCESSING, P455
  • [28] Statistical manifold as an affine space:: A functional equation approach
    Zhang, J
    Hästö P
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (01) : 60 - 65
  • [29] Divergence function, duality, and convex analysis
    Zhang, J
    [J]. NEURAL COMPUTATION, 2004, 16 (01) : 159 - 195
  • [30] Zhang J., 2014, INT J DISTRIB SENS N, V2014, P1