Models for zero-inflated count data using the Neyman type A distribution

被引:27
作者
Dobbie, Melissa J. [1 ]
Welsh, Alan H. [2 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Sch Math Sci, Canberra, ACT 0200, Australia
[2] Univ Southampton, Fac Math Studies, Southampton SO9 5NH, Hants, England
关键词
contagious distributions; covariate adjustment; Neyman type A distribution; non-nested hypothesis; parameterization; zero-inflated counts;
D O I
10.1177/1471082X0100100106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We explore the possibility of modelling zero-inflated count data using the Neyman type A distribution. We extend three parameterizations of the Neyman type A distribution to allow their parameters to depend on covariates. We develop models which relate counts of Leadbeater's possum to various habitat variables to illustrate the methodology. Half-normal plots are constructed for each model to explore the quality of the fit. We then formally compare the Neyman type A models using the method of Cox to test non-nested hypotheses. Finally, we compare each of the Neyman type A models with a model from a competing family, the conditional Poisson model.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 20 条
[1]  
Barton DE, 1957, TRABAJOS ESTADISTICA, V8, P13
[2]  
Cox D.R., 1961, P 4 BERK S MATH STAT, P105
[3]  
COX DR, 1962, J ROY STAT SOC B, V24, P406
[4]   NOTES ON CONTAGIOUS DISTRIBUTIONS IN PLANT POPULATIONS [J].
DAVID, FN ;
MOORE, PG .
ANNALS OF BOTANY, 1954, 18 (69) :47-53
[5]   FITTING THE NEYMAN TYPE-A (2 PARAMETER) CONTAGIOUS DISTRIBUTION [J].
DOUGLAS, JB .
BIOMETRICS, 1955, 11 (02) :149-173
[6]   ZERO-ALTERED AND OTHER REGRESSION-MODELS FOR COUNT DATA WITH ADDED ZEROS [J].
HEILBRON, DC .
BIOMETRICAL JOURNAL, 1994, 36 (05) :531-547
[7]  
Johnson N.L., 1992, UNIVARIATE DISCRETE
[8]   EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS [J].
KATTI, SK ;
GURLAND, J .
BIOMETRIKA, 1962, 49 (1-2) :215-&
[9]  
Lindenmayer DB, 1989, THESIS
[10]   APPROXIMATIONS TO NEYMAN TYPE A DISTRIBUTION FOR PRACTICAL PROBLEMS [J].
MARTIN, DC ;
KATTI, SK .
BIOMETRICS, 1962, 18 (03) :354-&