On a Schrodinger-Kirchhoff-type equation involving the p(x)-Laplacian

被引:23
作者
Cammaroto, F. [1 ]
Vilasi, L. [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, I-98166 Messina, Italy
关键词
Critical point; Kirchhoff-type problem; Schrodinger-type equation; p(x)-Laplacian; EXISTENCE; MULTIPLICITY; THEOREMS;
D O I
10.1016/j.na.2012.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with a Schrodinger-type equation involving a nonlocal Kirchhoff-type coefficient and depending on two real parameters. Working within the framework of variable exponent spaces and using the variational approach, we obtain several results of existence and multiplicity of solutions, depending on the range of the parameters. (C) 2013 Published by Elsevier Ltd
引用
收藏
页码:42 / 53
页数:12
相关论文
共 26 条
[1]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[2]   On superlinear p(x)-Laplacian equations in RN [J].
Alves, Claudianor O. ;
Liu, Shibo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) :2566-2579
[3]  
Aouaoui S., 2012, APPL MATH COMPUT
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]   Multiplicity results for a perturbed nonlinear Schrodinger equation [J].
Cammaroto, F. ;
Chinni, A. ;
Di Bella, B. .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :423-429
[6]   Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1841-1852
[7]  
Cammaroto F., 2012, APPL ANAL
[8]   Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations [J].
Colasuonno, Francesca ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :5962-5974
[9]   Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data [J].
Dai, Guowei ;
Ma, Ruyun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2666-2680
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+