Determination of the truncation order and numerical window for modeling general dielectric waveguides by the Fourier method

被引:10
作者
Ramanujam, N [1 ]
Li, LF [1 ]
Burke, JJ [1 ]
Gribbons, MA [1 ]
机构
[1] UNIV ARIZONA, DEPT ELECT & COMP ENGN, TUCSON, AZ 85721 USA
关键词
D O I
10.1109/50.485613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Fourier method of Henry and Verbeek [4], provides fast and accurate computation of the guided modes of 2- and 3-D waveguides with either homogeneous or inhomogeneous refractive index profiles, However, the accuracy and speed of the computation depends on the size of the numerical window and the number of terms (or truncation order) in the Fourier expansion of the solution to the reduced scalar wave equation. in this paper, we present a novel technique for the a priori determination of the numerical window and truncation order (of the Fourier method) by using the Wentzel-Kramers-Brillouin technique and the effective index method. This obviates the need to iteratively correct the computational parameters when using the Fourier method.
引用
收藏
页码:500 / 508
页数:9
相关论文
共 15 条
[1]  
Bracewell R., 1984, FOURIER TRANSFORM IT
[2]   OPTICAL WAVE-GUIDE MODES - AN APPROXIMATE SOLUTION USING GALERKINS METHOD WITH HERMITE-GAUSS BASIS FUNCTIONS [J].
GALLAWA, RL ;
GOYAL, IC ;
TU, YG ;
GHATAK, AK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (03) :518-522
[3]   SOLUTION OF THE SCALAR WAVE-EQUATION FOR ARBITRARILY SHAPED DIELECTRIC WAVE-GUIDES BY TWO-DIMENSIONAL FOURIER-ANALYSIS [J].
HENRY, CH ;
VERBEEK, BH .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1989, 7 (02) :308-313
[4]   FOURIER DECOMPOSITION METHOD APPLIED TO MAPPED INFINITE DOMAINS - SCALAR ANALYSIS OF DIELECTRIC WAVE-GUIDES DOWN TO MODAL CUTOFF [J].
HEWLETT, SJ ;
LADOUCEUR, F .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1995, 13 (03) :375-383
[5]   MODE DISPERSION IN DIFFUSED CHANNEL WAVEGUIDES BY EFFECTIVE INDEX METHOD [J].
HOCKER, GB ;
BURNS, WK .
APPLIED OPTICS, 1977, 16 (01) :113-118
[7]  
Kogelnik H., 1988, Guided-wave optoelectronics, P7
[8]  
Marcuse D., 1991, THEORY DIELECTRIC OP, V2nd ed.
[9]  
Mikhlin S. G., 1967, APPROXIMATE METHODS
[10]  
RAMANUJAM N, UNPUB IEEE J QUANTUM