Free idempotent generated semigroups: subsemigroups, retracts and maximal subgroups

被引:1
作者
Dandan, Yang [1 ]
Gould, Victoria [2 ]
Quinn-Gregson, Thomas [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Biordered set; free G-act; idempotent; independence algebra; partial endomorphism; Primary: 20M05; Secondary: 20F05; 20M30; REGULAR-SEMIGROUPS;
D O I
10.1080/00927872.2017.1378893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a subsemigroup of a semigroup T and let IG(E) and IG(F) be the free idempotent generated semigroups over the biordered sets of idempotents of E of S and F of T, respectively. We examine the relationship between IG(E) and IG(F), including the case where S is a retract of T. We give sucient conditions satisfied by T and S such that for any eE, the maximal subgroup of IG(E) with identity e is isomorphic to the corresponding maximal subgroup of IG(F). We then apply this result to some special cases and, in particular, to that of the partial endomorphism monoid PEnd A and the endomorphism monoid EndA of an independence algebra A of finite rank. As a corollary, we obtain Dolinka's reduction result for the case where A is a finite set.
引用
收藏
页码:2264 / 2277
页数:14
相关论文
共 29 条
[1]   SOME RESULTS ON STABILITY IN SEMIGROUPS [J].
ANDERSON, LW ;
HUNTER, RP ;
KOCH, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :521-&
[2]  
[Anonymous], 1965, Universal Algebra
[3]  
Brittenham M., 2010, ARXIV10095683
[4]   Subgroups of free idempotent generated semigroups need not be free [J].
Brittenham, Mark ;
Margolis, Stuart W. ;
Meakin, John .
JOURNAL OF ALGEBRA, 2009, 321 (10) :3026-3042
[5]   On regularity and the word problem for free idempotent generated semigroups [J].
Dolinka, Igor ;
Gray, Robert D. ;
Ruskuc, Nik .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 :401-432
[6]  
Dolinka I, 2014, T AM MATH SOC, V366, P419
[7]   EVERY GROUP IS A MAXIMAL SUBGROUP OF THE FREE IDEMPOTENT GENERATED SEMIGROUP OVER A BAND [J].
Dolinka, Igor ;
Ruskuc, Nik .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (03) :573-581
[8]   A Note on Free Idempotent Generated Semigroups over the Full Monoid of Partial Transformations [J].
Dolinka, Igor .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) :565-573
[9]   BIORDERED SETS COME FROM SEMIGROUPS [J].
EASDOWN, D .
JOURNAL OF ALGEBRA, 1985, 96 (02) :581-591
[10]  
Easdown D., 2011, CONTRIBUTED TALK GRO