Wong-Zakai approximations for reflecting stochastic differential equations

被引:18
作者
Pettersson, R [1 ]
机构
[1] Univ Lund, Dept Math Stat, S-22100 Lund, Sweden
关键词
differential inclusions; stochastic differential equations; reflections; Skorohod problem;
D O I
10.1080/07362999908809624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The show, under convenient conditions, existence of a solution to a stochastic differential equation reflecting on the boundary of a convex set by using Wong-Zakai approximations. This means that solutions of RSDEs can be seen as the limit of solutions of differential inclusions, where. the Brownian motion is replaced by its polygonal approximation.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 12 条
[1]   WEAK SOLUTIONS TO EQUATIONS OF EVOLUTION IN HILBERT SPACE [J].
BENILAN, P ;
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1972, 22 (02) :311-&
[2]  
DUPUIS P, 1987, STOCHASTICS, V21, P66
[3]  
Eugene W., 1965, INT J ENGINEERING SC, V3, P213, DOI 10.1016/0020-7225(65)90045-5
[4]  
Kree P., 1986, MATH RANDOM PHENOMEN
[5]   STOCHASTIC DIFFERENTIAL-EQUATIONS WITH REFLECTING BOUNDARY-CONDITIONS [J].
LIONS, PL ;
SZNITMAN, AS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :511-537
[6]  
MENALDI JL, 1984, INDIANA U MATH J, V30, P559
[8]  
Skorokhod A.V, 1962, Theor. Probab. Appl+., V7, P3, DOI DOI 10.1137/1107002
[9]  
Storm A., 1995, STOCHASTICS, V53, P241, DOI DOI 10.1080/17442509508833992
[10]  
Tanaka H., 1979, HIROSHIMA MATH J, V9, P163, DOI [10.32917/hmj/1206135203, DOI 10.32917/HMJ/1206135203]