The Chiral Critical Surface of QCD

被引:0
作者
de Forcrand, Ph. [1 ,2 ]
Philipsen, O. [3 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] CERN, Dept Phys, CH-1211 Geneva, Switzerland
[3] Westfalishche Wilhelms Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
来源
HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '10 | 2011年
关键词
POINT;
D O I
10.1007/978-3-642-15748-6_4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We calculate the critical surface bounding the region featuring chiral phase transitions in the quark mass and chemical potential parameter space of QCD with three flavours of quarks. Our calculations are valid for small to moderate quark chemical potentials, mu less than or similar to T. In a first step, we compute the leading Taylor coefficients of an expansion in mu/T for the theory with three degenerate flavours in two different ways and demonstrate, that such an expansion is controllable. Next we extend our calculations to the case of non-degenerate quark masses. These calculations are done on coarse N-t = 4 lattices. Finally, we present first results for the N-f = 3 QCD phase diagram at zero and finite density on N-t = 6 lattices, corresponding to a lattice spacing of a similar to 0.2 fm.
引用
收藏
页码:43 / +
页数:3
相关论文
共 13 条
[1]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[2]   Exact 2+1 flavour RHMC simulations [J].
Clark, MA ;
Kennedy, AD ;
Sroczynski, Z .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 :835-837
[3]   The QCD phase diagram for three degenerate flavors and small baryon density [J].
de Forcrand, P ;
Philipsen, O .
NUCLEAR PHYSICS B, 2003, 673 (1-2) :170-186
[4]  
de Forcrand P., 2007, arXiv:0711.0262 [hep-lat], P178
[5]   The chiral critical line of Nf=2+1 QCD at zero and non-zero baryon density [J].
de Forcrand, Philippe ;
Philipsen, Owe .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01)
[6]   The chiral critical point of Nf=3 QCD at finite density to the order (μ/T)4 [J].
de Forcrand, Philippe ;
Philipsen, Owe .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11)
[7]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198
[8]  
Fodor Z, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/04/050
[9]  
Halasz A. M., 1998, PHYS REV D, V58, DOI [10.1103/PhysRevD.58.096007, DOI 10.1103/PHYSREVD.58.096007]
[10]   The chiral critical point in 3-flavour QCD [J].
Karsch, F ;
Laermann, E ;
Schmidt, C .
PHYSICS LETTERS B, 2001, 520 (1-2) :41-49