Finite difference scheme for two-dimensional periodic nonlinear Schrodinger equations

被引:5
作者
Hong, Younghun [1 ]
Kwak, Chulkwang [2 ]
Nakamura, Shohei [3 ]
Yang, Changhun [4 ,5 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 06974, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
[4] Korea Inst Adv Study, Sch Math, Seoul 20455, South Korea
[5] Jeonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
Periodic nonlinear Schrodinger equation; Uniform Strichartz estimate; Continuum limit; DISPERSIVE PROPERTIES; CONVERGENCE; DERIVATION;
D O I
10.1007/s00028-020-00585-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear Schrodinger equation (NLS) on a periodic box can be discretized as a discrete nonlinear Schrodinger equation (DNLS) on a periodic cubic lattice, which is a system of finitely many ordinary differential equations. We show that in two spatial dimensions, solutions to the DNLS converge strongly in L-2 to those of the NLS as the grid size h > 0 approaches zero. As a result, the effectiveness of the finite difference method (FDM) is justified for the two-dimensional periodic NLS.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 50 条
[41]   New scheme for nonlinear Schrodinger equations with variable coefficients [J].
Yin, Xiu-Ling ;
Kong, Shu-Xia ;
Liu, Yan-Qin ;
Zheng, Xiao-Tong .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (03) :151-157
[42]   Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative [J].
Wang, Dongling ;
Xiao, Aiguo ;
Yang, Wei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :670-681
[43]   Finite difference approximation for two-dimensional time fractional diffusion equation [J].
Zhuang, P. ;
Liu, F. .
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2007, 1 (01) :1-15
[44]   A conservative linearized difference scheme for the nonlinear fractional Schrodinger equation [J].
Wang, Pengde ;
Huang, Chengming .
NUMERICAL ALGORITHMS, 2015, 69 (03) :625-641
[45]   A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations [J].
Cheng, Xiujun ;
Duan, Jinqiao ;
Li, Dongfang .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 :452-464
[46]   Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations [J].
Ray, Deep ;
Chandrashekar, Praveen ;
Fjordholm, Ulrik S. ;
Mishra, Siddhartha .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (05) :1111-1140
[47]   Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system [J].
Wang, Tingchun ;
Nie, Tao ;
Zhang, Luming .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) :745-759
[48]   An adaptive finite point scheme for the two-dimensional coupled burgers' equation [J].
Sreelakshmi, A. ;
Shyaman, V. P. ;
Awasthi, Ashish .
NUMERICAL ALGORITHMS, 2024,
[49]   An implicit difference scheme with the KPS preconditioner for two-dimensional time-space fractional convection-diffusion equations [J].
Zhou, Yongtao ;
Zhang, Chengjian ;
Brugnano, Luigi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (01) :31-42
[50]   A preconditioned implicit difference scheme for semilinear two-dimensional time-space fractional Fokker-Planck equations [J].
Zhang, Chengjian ;
Zhou, Yongtao .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (04)