Finite difference scheme for two-dimensional periodic nonlinear Schrodinger equations

被引:5
作者
Hong, Younghun [1 ]
Kwak, Chulkwang [2 ]
Nakamura, Shohei [3 ]
Yang, Changhun [4 ,5 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 06974, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
[4] Korea Inst Adv Study, Sch Math, Seoul 20455, South Korea
[5] Jeonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
Periodic nonlinear Schrodinger equation; Uniform Strichartz estimate; Continuum limit; DISPERSIVE PROPERTIES; CONVERGENCE; DERIVATION;
D O I
10.1007/s00028-020-00585-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear Schrodinger equation (NLS) on a periodic box can be discretized as a discrete nonlinear Schrodinger equation (DNLS) on a periodic cubic lattice, which is a system of finitely many ordinary differential equations. We show that in two spatial dimensions, solutions to the DNLS converge strongly in L-2 to those of the NLS as the grid size h > 0 approaches zero. As a result, the effectiveness of the finite difference method (FDM) is justified for the two-dimensional periodic NLS.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 50 条
  • [31] Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations
    Bu, Weiping
    Tang, Yifa
    Wu, Yingchuan
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 264 - 279
  • [32] Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrodinger equations
    Wang, Tingchun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) : 4237 - 4250
  • [33] NONLINEAR SCHRODINGER EQUATIONS ON PERIODIC METRIC GRAPHS
    Pankov, Alexander
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (02) : 697 - 714
  • [34] Numerical solution of two-dimensional nonlinear Schrodinger equation using a new two-grid finite element method
    Hu, Hanzhang
    Chen, Yanping
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 364
  • [35] A linearized ADI scheme for two-dimensional time-space fractional nonlinear vibration equations
    Zhang, Jingna
    Huang, Jianfei
    Aleroev, Temirkhan S.
    Tang, Yifa
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (12) : 2378 - 2392
  • [36] Compact difference scheme for the two-dimensional semilinear wave equation
    Aloraini, Najla M.
    Achouri, Talha
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 202 : 173 - 188
  • [37] A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction-diffusion equations
    Wu, Fengyan
    Cheng, Xiujun
    Li, Dongfang
    Duan, Jinqiao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2835 - 2850
  • [38] A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrodinger equations
    Li, Leonard Z.
    Sun, Hai-Wei
    Tam, Sik-Chung
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 187 : 38 - 48
  • [39] A finite difference solution to a two-dimensional parabolic inverse problem
    Li, Fu-le
    Wu, Zi-ku
    Ye, Chao-rong
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (05) : 2303 - 2313
  • [40] Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations
    Feng Liao
    Luming Zhang
    Tingchun Wang
    [J]. Numerical Algorithms, 2020, 85 : 1335 - 1363