Wormholes supported by hybrid metric-Palatini gravity

被引:207
作者
Capozziello, Salvatore [1 ,2 ]
Harko, Tiberiu [3 ,4 ]
Koivisto, Tomi S. [5 ]
Lobo, Francisco S. N. [6 ]
Olmo, Gonzalo J. [7 ,8 ]
机构
[1] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[2] INFN Sez Napoli, I-80126 Naples, Italy
[3] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[5] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway
[6] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal
[7] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain
[8] Univ Valencia, Ctr Mixto Univ Valencia CSIC, IFIC, E-46100 Valencia, Spain
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 12期
关键词
EXTENDED THEORIES; FORMULATION;
D O I
10.1103/PhysRevD.86.127504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the metric functions and choosing the scalar field, we find an asymptotically flat spacetime. DOI: 10.1103/PhysRevD.86.127504
引用
收藏
页数:5
相关论文
共 44 条
[1]   Unifying Einstein and Palatini gravities [J].
Amendola, Luca ;
Enqvist, Kari ;
Koivisto, Tomi .
PHYSICAL REVIEW D, 2011, 83 (04)
[2]   Isotropic and anisotropic bouncing cosmologies in Palatini gravity [J].
Barragan, Carlos ;
Olmo, Gonzalo J. .
PHYSICAL REVIEW D, 2010, 82 (08)
[3]  
Bertolami O., ARXIV 0811 2876
[4]   Extra force in f(R) modified theories of gravity [J].
Bertolami, Orfeu ;
Bohmer, Christian G. ;
Harko, Tiberiu ;
Lobo, Francisco S. N. .
PHYSICAL REVIEW D, 2007, 75 (10)
[5]   Nonminimal coupling of perfect fluids to curvature [J].
Bertolami, Orfeu ;
Lobo, Francisco S. N. ;
Paramos, Jorge .
PHYSICAL REVIEW D, 2008, 78 (06)
[6]   Wormhole geometries in modified teleparallel gravity and the energy conditions [J].
Boehmer, Christian G. ;
Harko, Tiberiu ;
Lobo, Francisco S. N. .
PHYSICAL REVIEW D, 2012, 85 (04)
[7]   Curvature quintessence [J].
Capozziello, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (04) :483-491
[8]  
Capozziello S., ARXIV 1209 2895
[9]   Extended theories of gravity and their cosmological and astrophysical applications [J].
Capozziello, Salvatore ;
Francaviglia, Mauro .
GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (2-3) :357-420
[10]   Extended Theories of Gravity [J].
Capozziello, Salvatore ;
De Laurentis, Mariafelicia .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 509 (4-5) :167-320