APPLICATION OF MOUNTAIN PASS THEOREM TO SUPERLINEAR EQUATIONS WITH FRACTIONAL LAPLACIAN CONTROLLED BY DISTRIBUTED PARAMETERS AND BOUNDARY DATA

被引:2
作者
Bors, Dorota [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90238 Lodz, Poland
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 01期
关键词
Boundary value problems; fractional Laplacian; stability; Mountain Pass Theorem; NONLINEAR EQUATIONS; DIFFUSION-EQUATIONS; REGULARITY;
D O I
10.3934/dcdsb.2018003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we consider a boundary value problem involving a differential equation with the fractional Laplacian (-Delta)(alpha/2) for alpha is an element of(1, 2) and some superlinear and subcritical nonlinearity G(z) provided with a nonhomogeneous Dirichlet exterior boundary condition. Some sufficient conditions under which the set of weak solutions to the boundary value problem is nonempty and depends continuously in the Painleve-Kuratowski sense on distributed parameters and exterior boundary data are stated. The proofs of the existence results rely on the Mountain Pass Theorem.
引用
收藏
页码:29 / 43
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 2009, SET VALUED ANAL
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[4]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[5]   OPTIMAL-CONTROL OF A SIGNORINI PROBLEM [J].
BERMUDEZ, A ;
SAGUEZ, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :576-582
[6]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[7]   Nontrivial solutions of superlinear nonlocal problems [J].
Bisci, Giovanni Molica ;
Repovs, Dusan ;
Servadei, Raffaella .
FORUM MATHEMATICUM, 2016, 28 (06) :1095-1110
[8]   A bifurcation result for non-local fractional equations [J].
Bisci, Giovanni Molica ;
Servadei, Raffaella .
ANALYSIS AND APPLICATIONS, 2015, 13 (04) :371-394
[9]  
BOGDAN K, 2009, LECT NOTES MATH 1980
[10]   A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :317-362