TRANSFER LEARNING WITH DEEP NETWORKS FOR SALIENCY PREDICTION IN NATURAL VIDEO

被引:0
作者
Chaabouni, Souad [1 ]
Benois-Pineau, Jenny [1 ]
Ben Amari, Chokri [2 ]
机构
[1] Univ Bordeaux, LaBRI UMR 5800, 351 Crs Liberat, F-33405 Talence, France
[2] Univ Sfax, Natl Engn Sch Sfax, REGIM Lab LR11ES48, BP1173, Sfax 3038, Tunisia
来源
2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2016年
关键词
Transfer learning; deep learning; saliency map; visual attention; residual motion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The main purpose of transfer learning is to resolve the problem of different data distribution, generally, when the training samples of source domain are different from the training samples of the target domain. Prediction of salient areas in natural video suffers from the lack of large video benchmarks with human gaze fixations. Different databases only provide dozens up to one or two hundred of videos. The only public large database is HOLLYWOOD with 1707 videos available with gaze recordings. The main idea of this paper is to transfer the knowledge learned with the deep network on a large dataset to train the network on a small dataset to predict salient areas. The results show an improvement on two small publicly available video datasets.
引用
收藏
页码:1604 / 1608
页数:5
相关论文
共 21 条
[1]  
[Anonymous], 2016, DEEP LEARNING SALIEN
[2]  
[Anonymous], 2013, CORR
[3]  
[Anonymous], 2012, JMLR WORKSHOP C P
[4]  
[Anonymous], IEEE INT C IM PROC C
[5]  
[Anonymous], COLL RES COMP NEUR A
[6]   What stands out in a scene? A study of human explicit saliency judgment [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
VISION RESEARCH, 2013, 91 :62-77
[7]  
González-Díaz I, 2014, ADV COMPUT VIS PATT, P79, DOI 10.1007/978-3-319-05696-8_4
[8]  
Harel J., 2007, ADV NEURAL INFORM PR, P545, DOI DOI 10.7551/MITPRESS/7503.003.0073
[9]   Image Signature: Highlighting Sparse Salient Regions [J].
Hou, Xiaodi ;
Harel, Jonathan ;
Koch, Christof .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (01) :194-201
[10]  
Jia Y., 2014, P 22 ACM INT C MULT, P675, DOI DOI 10.1145/2647868.2654889