Reprogrammable shape morphing of magnetic soft machines

被引:329
作者
Alapan, Yunus [1 ]
Karacakol, Alp C. [1 ,2 ]
Guzelhan, Seyda N. [1 ]
Isik, Irem [1 ]
Sitti, Metin [1 ,3 ,4 ,5 ]
机构
[1] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[4] Koc Univ, Sch Engn, TR-34450 Istanbul, Turkey
[5] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 38期
基金
欧洲研究理事会;
关键词
Magnetic domains;
D O I
10.1126/sciadv.abc6414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shape-morphing magnetic soft machines are highly desirable for diverse applications in minimally invasive medicine, wearable devices, and soft robotics. Despite recent progress, current magnetic programming approaches are inherently coupled to sequential fabrication processes, preventing reprogrammability and high-throughput programming. Here, we report a high-throughput magnetic programming strategy based on heating magnetic soft materials above the Curie temperature of the embedded ferromagnetic particles and reorienting their magnetic domains by applying magnetic fields during cooling. We demonstrate discrete, three-dimensional, and reprogrammable magnetization with high spatial resolution (similar to 38 mu m). Using the reprogrammable magnetization capability, reconfigurable mechanical behavior of an auxetic metamaterial structure, tunable locomotion of a surface-walking soft robot, and adaptive grasping of a soft gripper are shown. Our approach further enables high-throughput magnetic programming (up to 10 samples/min) via contact transfer. Heat-assisted magnetic programming strategy described here establishes a rich design space and mass-manufacturing capability for development of multiscale and reprogrammable soft machines.
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Abbott JJ, 2020, ANNU REV CONTR ROBOT, V3, P57, DOI [10.1146/annurev-control-081219082713, 10.1146/annurev-control-081219-082713]
[2]   Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow [J].
Alapan, Yunus ;
Bozuyuk, Ugur ;
Erkoc, Pelin ;
Karacakol, Alp Can ;
Sitti, Metin .
SCIENCE ROBOTICS, 2020, 5 (42)
[3]   Shape-encoded dynamic assembly of mobile micromachines [J].
Alapan, Yunus ;
Yigit, Berk ;
Beker, Onur ;
Demirors, Ahmet F. ;
Sitti, Metin .
NATURE MATERIALS, 2019, 18 (11) :1244-+
[4]   Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots [J].
Alapan, Yunus ;
Yasa, Oncay ;
Yigit, Berk ;
Yasa, I. Ceren ;
Erkoc, Pelin ;
Sitti, Metin .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 2, 2019, 2 :205-230
[5]   Soft erythrocyte-based bacterial microswimmers for cargo delivery [J].
Alapan, Yunus ;
Yasa, Oncay ;
Schauer, Oliver ;
Giltinan, Joshua ;
Tabak, Ahmet F. ;
Sourjik, Victor ;
Sitti, Metin .
SCIENCE ROBOTICS, 2018, 3 (17)
[6]  
Bottjer W. G., 1970, U.S. Patent, Patent No. [3,512,930, 3512930, 3512930A]
[7]   Addressable wireless actuation for multijoint folding robots and devices [J].
Boyvat, Mustafa ;
Koh, Je-Sung ;
Wood, Robert J. .
SCIENCE ROBOTICS, 2017, 2 (08)
[8]   Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer [J].
Challener, W. A. ;
Peng, Chubing ;
Itagi, A. V. ;
Karns, D. ;
Peng, Wei ;
Peng, Yingguo ;
Yang, XiaoMin ;
Zhu, Xiaobin ;
Gokemeijer, N. J. ;
Hsia, Y. -T. ;
Ju, G. ;
Rottmayer, Robert E. ;
Seigler, Michael A. ;
Gage, E. C. .
NATURE PHOTONICS, 2009, 3 (04) :220-224
[9]   Biomedical applications of soft robotics [J].
Cianchetti, Matteo ;
Laschi, Cecilia ;
Menciassi, Arianna ;
Dario, Paolo .
NATURE REVIEWS MATERIALS, 2018, 3 (06) :143-153
[10]   Nanomagnetic encoding of shape-morphing micromachines [J].
Cui, Jizhai ;
Huang, Tian-Yun ;
Luo, Zhaochu ;
Testa, Paolo ;
Gu, Hongri ;
Chen, Xiang-Zhong ;
Nelson, Bradley J. ;
Heyderman, Laura J. .
NATURE, 2019, 575 (7781) :164-+