Fluorescence Signal Generation Optimization by Optimal Filling of the High Numerical Aperture Objective Lens for High-Order Deep-Tissue Multiphoton Fluorescence Microscopy

被引:10
作者
Wang, Ke [1 ]
Liang, Runfu [1 ]
Qiu, Ping [2 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys Sci & Technol, Shenzhen 518060, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2015年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
Multiphoton microscopy; deep-tissue; three-photon; four-photon; IN-VIVO; RESOLUTION; DEPTH; CELLS;
D O I
10.1109/JPHOT.2015.2505145
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep-tissue multiphoton microscopy (MPM) enables noninvasive optical imaging into the deep regions of the tissue in animal models in vivo. High-order MPM techniques, such as three-and four-photon fluorescence microscopy at the 1700-nm window, are emerging as promising imaging techniques for deeper penetration. Currently, signal depletion at large imaging depth sets the depth limit for these imaging techniques. As a result, how to further boost signal level is the key to achieving a larger imaging depth. Contrary to the previous thought that overfilling the back aperture of the objective yields the highest multiphoton fluorescence signal, in this paper, through numerical simulation, we show that, due to the effect of exponential decay of the excitation beam, the signal generation is maximized for certain underfilling of the back aperture of the objective lens. This will provide a simple strategy for signal generation maximization in deep-tissue MPM and potentially enables deeper imaging penetration into the tissue.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy [J].
Cheng, JX ;
Volkmer, A ;
Xie, XS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (06) :1363-1375
[2]   Measurements of multiphoton action cross sections for multiphoton microscopy [J].
Cheng, Li-Chung ;
Horton, Nicholas G. ;
Wang, Ke ;
Chen, Shean-Jen ;
Xu, Chris .
BIOMEDICAL OPTICS EXPRESS, 2014, 5 (10) :3427-3433
[3]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[4]   Functional imaging of hippocampal place cells at cellular resolution during virtual navigation [J].
Dombeck, Daniel A. ;
Harvey, Christopher D. ;
Tian, Lin ;
Looger, Loren L. ;
Tank, David W. .
NATURE NEUROSCIENCE, 2010, 13 (11) :1433-U180
[5]  
Hell S W, 1996, J Biomed Opt, V1, P71, DOI 10.1117/12.229062
[6]  
Horton Nicholas G., 2013, 2013 Conference on Lasers & Electro-Optics. Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC), DOI 10.1109/CLEOE-IQEC.2013.6801501
[7]  
Horton NG, 2013, NAT PHOTONICS, V7, P205, DOI [10.1038/nphoton.2012.336, 10.1038/NPHOTON.2012.336]
[8]   Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser [J].
Kawakami, Ryosuke ;
Sawada, Kazuaki ;
Sato, Aya ;
Hibi, Terumasa ;
Kozawa, Yuichi ;
Sato, Shunichi ;
Yokoyama, Hiroyuki ;
Nemoto, Tomomi .
SCIENTIFIC REPORTS, 2013, 3
[9]   Imaging in vivo:: watching the brain in action [J].
Kerr, Jason N. D. ;
Denk, Winfried .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (03) :195-205
[10]   Deep tissue multiphoton microscopy using longer wavelength excitation [J].
Kobat, Demirhan ;
Durst, Michael E. ;
Nishimura, Nozomi ;
Wong, Angela W. ;
Schaffer, Chris B. ;
Xu, Chris .
OPTICS EXPRESS, 2009, 17 (16) :13354-13364