Shocked materials at the intersection of experiment and simulation

被引:17
作者
Lorenzana, H. E. [1 ]
Belak, J. F. [1 ]
Bradley, K. S. [1 ]
Bringa, E. M. [1 ]
Budil, K. S. [1 ]
Cazamias, J. U. [2 ]
El-Dasher, B. [1 ]
Hawreliak, J. A. [1 ]
Hessler, J. [3 ]
Kadau, K. [4 ]
Kalantar, D. H. [1 ]
McNaney, J. M. [1 ]
Milathianaki, D. [1 ]
Rosolankova, K. [5 ]
Swift, D. C. [1 ]
Taravillo, M. [6 ]
Van Buuren, T. W. [1 ]
Wark, J. S. [5 ]
de la Rubia, T. Diaz [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Alabama Birmingham, Birmingham, AL USA
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Los Alamos Natl Lab, Los Alamos, NM USA
[5] Univ Oxford, Oxford, England
[6] Univ Complutense Madrid, Madrid, Spain
来源
SCIENTIFIC MODELING AND SIMULATIONS | 2008年 / 15卷 / 1-3期
关键词
Shock; Phase transformations; Damage; Shock diagnostic tools; Molecular dynamics materials simulation; Ultrafast phenomena;
D O I
10.1007/s10820-008-9107-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena-nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.
引用
收藏
页码:159 / 186
页数:28
相关论文
共 64 条
[1]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]   POLYMORPHISM OF IRON AT HIGH PRESSURE [J].
BANCROFT, D ;
PETERSON, EL ;
MINSHALL, S .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (03) :291-298
[5]   THE UPGRADE TO THE OMEGA-LASER-SYSTEM [J].
BOEHLY, TR ;
CRAXTON, RS ;
HINTERMAN, TH ;
KELLY, JH ;
KESSLER, TJ ;
KUMPAN, SA ;
LETZRING, SA ;
MCCRORY, RL ;
MORSE, SFB ;
SEKA, W ;
SKUPSKY, S ;
SOURES, JM ;
VERDON, CP .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (01) :508-510
[6]   Metastability and dynamics of the shock-induced phase transition in iron [J].
Boettger, JC ;
Wallace, DC .
PHYSICAL REVIEW B, 1997, 55 (05) :2840-2849
[7]   Some applications of laser-induced shocks on the dynamic behavior of materials [J].
Boustie, M ;
deResseguier, T ;
Hallouin, M ;
Migault, A ;
Romain, JP ;
Zagouri, D .
LASER AND PARTICLE BEAMS, 1996, 14 (02) :225-235
[8]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841
[9]   Atomistic shock Hugoniot simulation of single-crystal copper [J].
Bringa, EM ;
Cazamias, JU ;
Erhart, P ;
Stölken, J ;
Tanushev, N ;
Wirth, BD ;
Rudd, RE ;
Caturla, MJ .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3793-3799
[10]   Shock deformation of face-centred-cubic metals on subnanosecond timescales [J].
Bringa, M. ;
Rosolankova, K. ;
Rudd, R. E. ;
Remington, B. A. ;
Wark, J. S. ;
Duchaineau, M. ;
Kalantar, H. ;
Hawreliak, J. ;
Belak, J. .
NATURE MATERIALS, 2006, 5 (10) :805-809