Protective estimation of mixed-effects logistic regression when data are not missing at random

被引:12
作者
Skrondal, A. [1 ]
Rabe-Hesketh, S. [2 ]
机构
[1] Norwegian Inst Publ Hlth, Div Epidemiol, N-0403 Oslo, Norway
[2] Univ Calif Berkeley, Grad Sch Educ, Berkeley, CA 94720 USA
关键词
Drop-out; Fixed-effects logistic regression; Longitudinal data; Maximum conditional likelihood; Missing data; Panel data; REPEATED CATEGORICAL MEASUREMENTS; LONGITUDINAL BINARY DATA; RANDOM EFFECTS MODELS; PANEL-DATA; DROP-OUT; LIKELIHOOD; NONRESPONSE; ATTRITION; INFERENCE; SUBJECT;
D O I
10.1093/biomet/ast054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider estimation of mixed-effects logistic regression models for longitudinal data when missing outcomes are not missing at random. A typology of missingness mechanisms is presented that includes missingness dependent on observed or missing current outcomes, observed or missing lagged outcomes and subject-specific effects. When data are not missing at random, consistent estimation by maximum marginal likelihood generally requires correct parametric modelling of the missingness mechanism, which hinges on unverifiable assumptions. We show that standard maximum conditional likelihood estimators are protective in the sense that they are consistent for monotone or intermittent missing data under a wide range of missingness mechanisms. Our approach requires neither specification of parametric models for the missingness mechanism nor refreshment samples and is straightforward to implement in standard software.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 50 条
[41]   A sequential logistic regression classifier based on mixed effects with applications to longitudinal data [J].
Zhang, Xin ;
Jeske, Daniel R. ;
Li, Jun ;
Wong, Vance .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 :238-249
[42]   Estimation of Panel Data Models with Random Interactive Effects and Multiple Structural Breaks when T is Fixed [J].
Kaddoura, Yousef ;
Westerlund, Joakim .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) :778-790
[43]   Simultaneous fixed and random effects selection in finite mixture of linear mixed-effects models [J].
Du, Yeting ;
Khalili, Abbas ;
Neslehova, Johanna G. ;
Steele, Russell J. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04) :596-616
[44]   Conditional Inference Functions for Mixed-Effects Models With Unspecified Random-Effects Distribution [J].
Wang, Peng ;
Tsai, Guei-feng ;
Qu, Annie .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) :725-736
[45]   Estimation of regression parameters in missing data problems [J].
McLeish, Donald L. ;
Struthers, Cyntha A. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (02) :233-259
[46]   Estimation of a Predictor's Importance by Random Forests When There Is Missing Data: RISK Prediction in Liver Surgery using Laboratory Data [J].
Hapfelmeier, Alexander ;
Hothorn, Torsten ;
Riediger, Carina ;
Ulm, Kurt .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2014, 10 (02) :165-183
[47]   Joint mixed-effects models for causal inference with longitudinal data [J].
Shardell, Michelle ;
Ferrucci, Luigi .
STATISTICS IN MEDICINE, 2018, 37 (05) :829-846
[48]   SEMIPARAMETRIC ESTIMATION WITH DATA MISSING NOT AT RANDOM USING AN INSTRUMENTAL VARIABLE [J].
Sun, BaoLuo ;
Liu, Lan ;
Miao, Wang ;
Wirth, Kathleen ;
Robins, James ;
Tchetgen, Eric J. Tchetgen .
STATISTICA SINICA, 2018, 28 (04) :1965-1983
[49]   Calibration estimation of semiparametric copula models with data missing at random [J].
Hamori, Shigeyuki ;
Motegi, Kaiji ;
Zhang, Zheng .
JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 :85-109
[50]   Robust estimation for moment condition models with data missing not at random [J].
Li, Wei ;
Yang, Shu ;
Han, Peisong .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 :246-254