Protective estimation of mixed-effects logistic regression when data are not missing at random

被引:12
作者
Skrondal, A. [1 ]
Rabe-Hesketh, S. [2 ]
机构
[1] Norwegian Inst Publ Hlth, Div Epidemiol, N-0403 Oslo, Norway
[2] Univ Calif Berkeley, Grad Sch Educ, Berkeley, CA 94720 USA
关键词
Drop-out; Fixed-effects logistic regression; Longitudinal data; Maximum conditional likelihood; Missing data; Panel data; REPEATED CATEGORICAL MEASUREMENTS; LONGITUDINAL BINARY DATA; RANDOM EFFECTS MODELS; PANEL-DATA; DROP-OUT; LIKELIHOOD; NONRESPONSE; ATTRITION; INFERENCE; SUBJECT;
D O I
10.1093/biomet/ast054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider estimation of mixed-effects logistic regression models for longitudinal data when missing outcomes are not missing at random. A typology of missingness mechanisms is presented that includes missingness dependent on observed or missing current outcomes, observed or missing lagged outcomes and subject-specific effects. When data are not missing at random, consistent estimation by maximum marginal likelihood generally requires correct parametric modelling of the missingness mechanism, which hinges on unverifiable assumptions. We show that standard maximum conditional likelihood estimators are protective in the sense that they are consistent for monotone or intermittent missing data under a wide range of missingness mechanisms. Our approach requires neither specification of parametric models for the missingness mechanism nor refreshment samples and is straightforward to implement in standard software.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 50 条
[31]   Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models [J].
Bondell, Howard D. ;
Krishna, Arun ;
Ghosh, Sujit K. .
BIOMETRICS, 2010, 66 (04) :1069-1077
[32]   Bayesian estimation and influence diagnostics of generalized partially linear mixed-effects models for longitudinal data [J].
Duan, Xing-De ;
Tang, Nian-Sheng .
STATISTICS, 2016, 50 (03) :525-539
[33]   Nonlinear mixed-effects modelling for single cell estimation: when, why, and how to use it [J].
Karlsson, Markus ;
Janzen, David L. I. ;
Durrieu, Lucia ;
Colman-Lerner, Alejandro ;
Kjellsson, Maria C. ;
Cedersund, Gunnar .
BMC SYSTEMS BIOLOGY, 2015, 9
[34]   On the Estimation of Nonlinear Mixed-Effects Models and Latent Curve Models for Longitudinal Data [J].
Blozis, Shelley A. ;
Harring, Jeffrey R. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) :904-920
[35]   Random effects probit and logistic regression models for three-level data [J].
Gibbons, RD ;
Hedeker, D .
BIOMETRICS, 1997, 53 (04) :1527-1537
[36]   The transition model test for serial dependence in mixed-effects models for binary data [J].
Breinegaard, Nina ;
Rabe-Hesketh, Sophia ;
Skrondal, Anders .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) :1756-1773
[37]   Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods [J].
Lee, Shen-Ming ;
Le, Truong-Nhat ;
Tran, Phuoc-Loc ;
Li, Chin-Shang .
COMPUTATIONAL STATISTICS, 2023, 38 (02) :899-934
[38]   TESTS FOR RANDOM EFFECTS IN LINEAR MIXED MODELS USING MISSING DATA [J].
Huang, Xianzheng .
STATISTICA SINICA, 2013, 23 (03) :1043-1070
[39]   Handling missing data when estimating causal effects with targeted maximum likelihood estimation [J].
Dashti, S. Ghazaleh ;
Lee, Katherine J. ;
Simpson, Julie A. ;
White, Ian R. ;
Carlin, John B. ;
Moreno-Betancur, Margarita .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2024, 193 (07) :1019-1030
[40]   Bayesian quantile regression for nonlinear mixed-effects joint models for longitudinal data in the presence of mismeasured covariate errors [J].
Huang, Yangxin ;
Chen, Jiaqing ;
Qiu, Huahai .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2017, 27 (05) :741-755