Single-graded CIGS with narrow bandgap for tandem solar cells

被引:52
作者
Feurer, Thomas [1 ]
Bissig, Benjamin [1 ]
Weiss, Thomas P. [1 ]
Carron, Romain [1 ]
Avancini, Enrico [1 ]
Lockinger, Johannes [1 ]
Buecheler, Stephan [1 ]
Tiwari, Ayodhya N. [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
Photovoltaics; CIGS; narrow bandgap; CIS; thin-film solar cells; tandem solar cells; CU(IN; GA)SE-2; THIN-FILMS; EFFICIENCIES; LIMIT;
D O I
10.1080/14686996.2018.1444317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (similar to 1eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se-2 with a bandgap of 1.00eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. [GRAPHICS] .
引用
收藏
页码:263 / 270
页数:8
相关论文
共 24 条
[1]  
ABUSHAMA J, 2005, 31 IEEE PHOT SPEC C, P299
[2]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[3]   23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability [J].
Bush, Kevin A. ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Boccard, Mathieu ;
Cheacharoen, Rongrong ;
Mailoa, Jonathan P. ;
McMeekin, David P. ;
Hoye, Robert L. Z. ;
Bailie, Colin D. ;
Leijtens, Tomas ;
Peters, Ian Marius ;
Minichetti, Maxmillian C. ;
Rolston, Nicholas ;
Prasanna, Rohit ;
Sofia, Sarah ;
Harwood, Duncan ;
Ma, Wen ;
Moghadam, Farhad ;
Snaith, Henry J. ;
Buonassisi, Tonio ;
Holman, Zachary C. ;
Bent, Stacey F. ;
McGehee, Michael D. .
NATURE ENERGY, 2017, 2 (04)
[4]  
Carron R, REFRACTIVE IND UNPUB
[5]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[6]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/nmat3122, 10.1038/NMAT3122]
[7]   Back surface band gap gradings in Cu(In,Ga)Se2 solar cells [J].
Dullweber, T ;
Lundberg, O ;
Malmström, J ;
Bodegård, M ;
Stolt, L ;
Rau, U ;
Schock, HW ;
Werner, JH .
THIN SOLID FILMS, 2001, 387 (1-2) :11-13
[8]   High-effciency inverted semi-transparent planar perovskite solar cells in substrate configuration [J].
Fu, Fan ;
Feurer, Thomas ;
Weiss, Thomas Paul ;
Pisoni, Stefano ;
Avancini, Enrico ;
Andres, Christian ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
NATURE ENERGY, 2017, 2 (01)
[9]   Band-gap engineering in Cu(In,Ga)Se-2 thin films grown from (In,Ga)(2)Se-3 precursors [J].
Gabor, AM ;
Tuttle, JR ;
Bode, MH ;
Franz, A ;
Tennant, AL ;
Contreras, MA ;
Noufi, R ;
Jensen, DG ;
Hermann, AM .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1996, 41-2 :247-260
[10]   Suns-VOC characteristics of high performance kesterite solar cells [J].
Gunawan, Oki ;
Gokmen, Tayfun ;
Mitzi, David B. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)