Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features

被引:70
作者
Chin, Seow Yong [1 ]
Dikshit, Vishwesh [1 ]
Priyadarshini, Balasankar Meera [1 ]
Zhang, Yi [1 ,2 ]
机构
[1] Nanyang Technol Univ, HP NTU Digital Mfg Corp Lab, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
3D printing; 3D-printed devices; powder bed fusion technologies; micro and mesoscale 3D printing; minimum feature size; 3D-printed scaffold; MULTI JET FUSION; ADDITIVE MANUFACTURING TECHNOLOGIES; OF-THE-ART; MECHANICAL-PROPERTIES; BED FUSION; LATTICE STRUCTURES; PROCESS PARAMETERS; SURFACE-ROUGHNESS; MESH STRUCTURE; DRUG-DELIVERY;
D O I
10.3390/mi11070658
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Customized manufacturing of a miniaturized device with micro and mesoscale features is a key requirement of mechanical, electrical, electronic and medical devices. Powder-based 3D-printing processes offer a strong candidate for micromanufacturing due to the wide range of materials, fast production and high accuracy. This study presents a comprehensive review of the powder-based three-dimensional (3D)-printing processes and how these processes impact the creation of devices with micro and mesoscale features. This review also focuses on applications of devices with micro and mesoscale size features that are created by powder-based 3D-printing technology.
引用
收藏
页数:32
相关论文
共 239 条
[11]   Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers [J].
Balzereit, Sandra ;
Proe, Friedrich ;
Altstaedt, Volker ;
Emmelmann, Claus .
ADDITIVE MANUFACTURING, 2018, 23 :347-354
[12]   Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants [J].
Bandyopadhyay, Amit ;
Espana, Felix ;
Balla, Vamsi Krishna ;
Bose, Susmita ;
Ohgami, Yusuke ;
Davies, Neal M. .
ACTA BIOMATERIALIA, 2010, 6 (04) :1640-1648
[13]   Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation [J].
Baranowski, Pawel ;
Platek, Pawel ;
Antolak-Dudka, Anna ;
Sarzynski, Marcin ;
Kucewicz, Michal ;
Durejko, Tomasz ;
Malachowski, Jerzy ;
Janiszewski, Jacek ;
Czujko, Tomasz .
ADDITIVE MANUFACTURING, 2019, 25 (307-316) :307-316
[14]   An overview of residual stresses in metal powder bed fusion [J].
Bartlett, Jamison L. ;
Li, Xiaodong .
ADDITIVE MANUFACTURING, 2019, 27 :131-149
[15]   Biomedical production of implants by additive electro-chemical and physical processes [J].
Bartolo, Paulo ;
Kruth, Jean-Pierre ;
Silva, Jorge ;
Levy, Gideon ;
Malshe, Ajay ;
Rajurkar, Kamlakar ;
Mitsuishi, Mamoru ;
Ciurana, Joaquim ;
Leu, Ming .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2012, 61 (02) :635-655
[16]   3D Printing of Inertial Microfluidic Devices [J].
Bazaz, Sajad Razavi ;
Rouhi, Omid ;
Raoufi, Mohammad Amin ;
Ejeian, Fatemeh ;
Asadnia, Mohsen ;
Jin, Dayong ;
Warkiani, Majid Ebrahimi .
SCIENTIFIC REPORTS, 2020, 10 (01)
[17]   3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications [J].
Bertana, Valentina ;
Potrich, Cristina ;
Scordo, Giorgio ;
Scaltrito, Luciano ;
Ferrero, Sergio ;
Lamberti, Andrea ;
Perrucci, Francesco ;
Pirri, Candido Fabrizio ;
Pederzolli, Cecilia ;
Cocuzza, Matteo ;
Marasso, Simone Luigi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (01)
[18]   The upcoming 3D-printing revolution in microfluidics [J].
Bhattacharjee, Nirveek ;
Urrios, Arturo ;
Kanga, Shawn ;
Folch, Albert .
LAB ON A CHIP, 2016, 16 (10) :1720-1742
[19]  
Bhavar V, 2017, SYST INNOV SER, P251
[20]  
Brandt M, 2017, WOODH PUB SER ELECT, P1