A ROBUST PRECONDITIONED MINRES SOLVER FOR DISTRIBUTED TIME-PERIODIC EDDY CURRENT OPTIMAL CONTROL PROBLEMS

被引:43
作者
Kolmbauer, Michael [1 ]
Langer, Ulrich [1 ,2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Linz, Austria
基金
奥地利科学基金会;
关键词
time-periodic optimization; eddy current problems; finite element discretization; MinRes solver; MIXED FINITE-ELEMENTS; MAXWELLS EQUATIONS; MULTIGRID METHOD; BOUNDARY-VALUE; STRATEGY; H(DIV);
D O I
10.1137/110842533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the construction and analysis of robust solvers for some distributed optimal control problems for time-periodic eddy current problems. We apply the multiharmonic approach to the optimality system and construct a new preconditioned MinRes solver for the system of frequency domain equations. We show that this solver is robust with respect to the space discretization and time discretization parameters as well as all involved "bad" parameters, like the conductivity, the reluctivity, and the regularization and cost parameters.
引用
收藏
页码:B785 / B809
页数:25
相关论文
共 62 条
[1]  
Abbeloos D, 2009, AIP CONF PROC, V1168, P329, DOI 10.1063/1.3241461
[2]  
[Anonymous], 2005, SPRINGER SER COMPUT
[3]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[4]   A UNIFIED VARIATIONAL FORMULATION FOR THE PARABOLIC-ELLIPTIC EDDY CURRENT EQUATIONS [J].
Arnold, Lilian ;
Harrach, Bastian .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (02) :558-576
[5]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[6]   Numerical analysis of nonlinear multiharmonic eddy current problems [J].
Bachinger, F ;
Langer, U ;
Schöberl, J .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :593-616
[7]   Efficient solvers for nonlinear time-periodic eddy current problems [J].
Bachinger, Florian ;
Langer, Ulrich ;
Schoeberl, Joachim .
COMPUTING AND VISUALIZATION IN SCIENCE, 2006, 9 (04) :197-207
[8]   AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EDDY CURRENT MODEL WITH CIRCUIT/FIELD COUPLINGS [J].
Chen, Junqing ;
Chen, Zhiming ;
Cui, Tao ;
Zhang, Lin-Bo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) :1020-1042
[9]   Domain decomposition solvers for nonlinear multiharmonic finite element equations [J].
Copeland, D. M. ;
Langer, U. .
JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (03) :157-175
[10]   Domain Decomposition Solvers for Frequency-Domain Finite Element Equations [J].
Copeland, Dylan ;
Kolmbauer, Michael ;
Langer, Ulrich .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 :301-+