Modeling SPR sensors with the finite-difference time-domain method

被引:28
|
作者
Christensen, D [1 ]
Fowers, D [1 ]
机构
[1] UNIV UTAH,DEPT BIOENGN,SALT LAKE CITY,UT 84112
来源
BIOSENSORS & BIOELECTRONICS | 1996年 / 11卷 / 6-7期
关键词
surface plasmon resonance; sensor modeling; finite-difference time-domain; numerical techniques;
D O I
10.1016/0956-5663(96)83301-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In sensors employing surface plasmon resonance (SPR), the uniformity of the metal film and the wavefront structure of the incident beam have an effect on angular sensitivity, yet most modeling methods are not capable of considering inhomogeneous layers or nonplanar excitation beams. We have applied the numerical electromagnetic method of finite-difference time-domain to this problem. To correctly model the time-domain behavior of the metal's electron oscillations, we add a kinetic force equation consistent with the Drude free electron model. We have analyzed an SPR configuration consisting of an illuminating beam of finite size (approximating a focused beam) incident onto a smooth silver film, and have obtained Poynting vector plots and reflectivity data. We find that the angular width of the near-field reflectivity minimum is in reasonable agreement with an extension of planewave theory using an angular spectrum approach. We have also analyzed a model of a rough metal film, and find that the reflectivity curve is broadened and shifted, and that local electric fields are enhanced near the metal edges.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 50 条
  • [31] Multi-time-step finite-difference time-domain method
    Zheng, Yang-Ming
    Chu, Qing-Xin
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (09): : 1504 - 1506
  • [32] A novel high accuracy finite-difference time-domain method
    Sekido, Harune
    Umeda, Takayuki
    EARTH PLANETS AND SPACE, 2024, 76 (01):
  • [33] Unconditionally stable implicit finite-difference time-domain method
    Gao, Wen-Jun
    Lu, Shan-Wei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (06): : 900 - 902
  • [34] A DISTRIBUTED IMPLEMENTATION OF THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD
    RODOHAN, DP
    SAUNDERS, SR
    GLOVER, RJ
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1995, 8 (3-4) : 283 - 291
  • [35] THE FINITE-DIFFERENCE TIME-DOMAIN METHOD APPLIED TO ANISOTROPIC MATERIAL
    SCHNEIDER, J
    HUDSON, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (07) : 994 - 999
  • [36] A novel high accuracy finite-difference time-domain method
    Harune Sekido
    Takayuki Umeda
    Earth, Planets and Space, 76
  • [37] An unconditionally stable scheme for the finite-difference time-domain method
    Chung, YS
    Sarkar, TK
    Jung, BH
    Salazar-Palma, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) : 697 - 704
  • [38] The application of the finite-difference time-domain method to EMC analysis
    Gedney, SD
    IEEE 1996 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY - EMC: SILICON TO SYSTEMS, SYMPOSIUM RECORD, 1996, : 117 - 121
  • [39] Simple PML implementation for finite-difference time-domain method
    Jiang, Haolin
    Cui, Tiejun
    ELECTRONICS LETTERS, 2018, 54 (16) : 988 - 989
  • [40] A Java platform for the implementation of the finite-difference time-domain method
    Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
    不详
    SBMO IEEE MTT S Int Microwave Optoelectron Conf Proc, 2011, (927-931):