Modeling SPR sensors with the finite-difference time-domain method

被引:28
|
作者
Christensen, D [1 ]
Fowers, D [1 ]
机构
[1] UNIV UTAH,DEPT BIOENGN,SALT LAKE CITY,UT 84112
来源
BIOSENSORS & BIOELECTRONICS | 1996年 / 11卷 / 6-7期
关键词
surface plasmon resonance; sensor modeling; finite-difference time-domain; numerical techniques;
D O I
10.1016/0956-5663(96)83301-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In sensors employing surface plasmon resonance (SPR), the uniformity of the metal film and the wavefront structure of the incident beam have an effect on angular sensitivity, yet most modeling methods are not capable of considering inhomogeneous layers or nonplanar excitation beams. We have applied the numerical electromagnetic method of finite-difference time-domain to this problem. To correctly model the time-domain behavior of the metal's electron oscillations, we add a kinetic force equation consistent with the Drude free electron model. We have analyzed an SPR configuration consisting of an illuminating beam of finite size (approximating a focused beam) incident onto a smooth silver film, and have obtained Poynting vector plots and reflectivity data. We find that the angular width of the near-field reflectivity minimum is in reasonable agreement with an extension of planewave theory using an angular spectrum approach. We have also analyzed a model of a rough metal film, and find that the reflectivity curve is broadened and shifted, and that local electric fields are enhanced near the metal edges.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 50 条
  • [21] Implicit nonstaggered finite-difference time-domain method
    Wang, SM
    Lee, R
    Teixeira, FL
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 317 - 319
  • [22] Global modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation
    Mirzavand, R.
    Abdipour, A.
    Moradi, G.
    Movahhedi, M.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (04) : 400 - 412
  • [23] Modeling of the seat dip effect using the finite-difference time-domain method
    Lo, Vetri, Joe
    Mardare, Doru
    Soulodre, Gilbert
    Journal of the Acoustical Society of America, 1996, 100 (4 pt 1):
  • [24] A loaded technique for modeling oblique wire in finite-difference time-domain method
    Sun, Dongyang
    Mao, Congguang
    Du, Chuanbao
    Bao, Weimin
    Li, Xiaoping
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (10) : 3151 - 3156
  • [25] Effective Modeling of Graphene as a Conducting Sheet in the Finite-Difference Time-Domain Method
    Nayyeri, Vahid
    Soleimani, Mohammad
    Ramahi, Omar M.
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 906 - +
  • [26] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [27] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [28] Time-domain finite-difference modeling for attenuative anisotropic media
    Bai, Tong
    Tsvankin, Ilya
    GEOPHYSICS, 2016, 81 (02) : C69 - C77
  • [29] On the Stability of the Finite-Difference Time-Domain Modeling of Lorentz Media
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 283 - 285
  • [30] ANALYSIS OF SUPERCONDUCTIVE INTERCONNECTS BY THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    WANG, BZ
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (18) : 837 - 840