Spectral gaps of 1-D Robin Schrodinger operators with single-well potentials

被引:6
作者
Ashbaugh, Mark S. [1 ]
Kielty, Derek [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
1ST; 2; EIGENVALUES;
D O I
10.1063/5.0015671
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove sharp lower bounds on the spectral gap of 1-dimensional Schrodinger operators with Robin boundary conditions for each value of the Robin parameter. In particular, our lower bounds apply to single-well potentials with a centered transition point. This result extends the work of Cheng et al. [Comput. Math. Appl. 60(9), 2556-2563 (2010)] and Horvath [Proc. Am. Math. Soc. 131(4), 1215-1224 (2002)] in the Neumann and Dirichlet endpoint cases to the interpolating regime. We also build on the recent work by Andrews, Clutterbuck, and Hauer (arXiv:2002.06900) in the case of convex and symmetric single-well potentials. In particular, we show that the spectral gap is an increasing function of the Robin parameter for symmetric potentials.
引用
收藏
页数:15
相关论文
共 24 条
[2]  
American Institute of Mathematics workshop, 2006, LOW EIG LAPL SCHROD
[3]  
American Institute of Mathematics workshop, 2019, SHAP OPT SURF INT
[4]  
Andrews B., ARXIV200206900
[5]  
Andrews B, 2020, CAMB J MATH, V8, P243
[6]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[7]  
Ashbaugh M.S., The fundamental gap
[8]   OPTIMAL LOWER BOUND FOR THE GAP BETWEEN THE 1ST 2 EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH SYMMETRIC SINGLE-WELL POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (02) :419-424
[9]   On the "hot spots" conjecture of J.!Rauch [J].
Bañuelos, R ;
Burdzy, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 164 (01) :1-33
[10]  
Buffoni B., 2003, Princeton Series in Applied Mathematics