Creep behavior of polyurethane nanocomposites with carbon nanotubes

被引:108
作者
Yao, Zhen [1 ]
Wu, Defeng [1 ]
Chen, Chong [2 ]
Zhang, Ming [2 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Nanjing 225002, Jiangsu, Peoples R China
[2] Yangzhou Univ, Testing Ctr, Nanjing 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-matrix composites (PMCs); Creep; Analytical modeling; Mechanical testing; MECHANICAL-PROPERTIES; RHEOLOGICAL PROPERTIES; COMPOSITES; RECOVERY; BLENDS; CRYSTALLIZATION; CONDUCTIVITY; POLYAMIDE-6; MWCNT; SHEAR;
D O I
10.1016/j.compositesa.2013.03.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The polyurethane (PU) nanocomposites containing carbon nanotubes (CNTs) were prepared through in situ polymerization for the creep study. The results show that the presence of CNTs leads to a significant improvement of creep resistance of PU. However, this creep resistance does not increase monotonously with increase of CNT contents because it is highly dependent on the dispersion of CNTs. Several theoretical models were then used to establish the relations between CNT dispersion and final creep and creep-recovery behaviors of nanocomposites. The as-obtained viscoelastic and viscoplastic parameters of PU matrix and structural parameters of CNTs further confirmed the retardation effect by CNTs during creep of the nanocomposite systems. Besides, the time-temperature superposition (ITS) principle was also employed in this work to make a further evaluation on the creep of PU/CNT nanocomposites with long-term time scale. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 56 条
[1]   Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites:: Recovery after shear and crystallization [J].
Alig, Ingo ;
Lellinger, Dirk ;
Dudkin, Sergej M. ;
Poetschke, Petra .
POLYMER, 2007, 48 (04) :1020-1029
[2]   Biodegradation of a vegetable oil based polyurethane and wood flour composites [J].
Aranguren, M. I. ;
Gonzalez, J. F. ;
Mosiewicki, M. A. .
POLYMER TESTING, 2012, 31 (01) :7-15
[3]   Carbon nanotube-reinforced polyurethane composite fibers [J].
Chen, Wei ;
Tao, Xiaoming ;
Liu, Yuyang .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (15) :3029-3034
[4]   Electroactive shape-memory polyurethane composites incorporating carbon nanotubes [J].
Cho, JW ;
Kim, JW ;
Jung, YC ;
Goo, NS .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (05) :412-416
[5]   Polychloroprene rubber/ethylene-propylene diene monomer/multiple walled carbon nanotube nanocomposites: synergistic effects of radiation crosslinking and MWNT addition [J].
Dubey, K. A. ;
Bhardwaj, Y. K. ;
Rajkumar, K. ;
Panicker, L. ;
Chaudhari, C. V. ;
Chakraborty, S. K. ;
Sabharwal, S. .
JOURNAL OF POLYMER RESEARCH, 2012, 19 (05)
[6]   Reinforcement mechanisms in MWCNT-filled polycarbonate [J].
Eitan, A. ;
Fisher, F. T. ;
Andrews, R. ;
Brinson, L. C. ;
Schadler, L. S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (09) :1162-1173
[7]   A mechanical model for creep, recovery and stress relaxation in polymeric materials [J].
Fancey, KS .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (18) :4827-4831
[8]  
Findley William N., 1989, CREEP RELAXATION NON, DOI DOI 10.1115/1.3424077
[9]   Mechanical properties of carbon nanoparticle-reinforced elastomers [J].
Frogley, MD ;
Ravich, D ;
Wagner, HD .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1647-1654
[10]   Temperature dependence of creep behavior of PP-MWNT nanocomposites [J].
Ganss, Martin ;
Satapathy, Bhabani K. ;
Thunga, Mahendra ;
Weidisch, Roland ;
Poetschke, Petra ;
Janke, Andreas .
MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (16) :1624-1633