The Pandemonium system of reflective agents

被引:15
作者
Smieja, F
机构
[1] Gesellschaft für Mathematik und Datenverarbeitung, D-5205 Sankt Augustin 1, Schloß Birlinghoven
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1996年 / 7卷 / 01期
关键词
D O I
10.1109/72.478395
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Pandemonium system of reflective MINOS agents solves problems by automatic dynamic modularization of the input space, The agents contain feedforward neural networks which adapt using the backpropagation algorithm, We demonstrate the performance of Pandemonium on various categories of problems, These include learning continuous functions with discontinuities, separating two spirals, learning the parity function, and optical character recognition, It is shown how strongly the advantages gained from using a modularization technique depend on the nature of the problem, The superiority of the Pandemonium method over a single net on the first two test categories is contrasted with its limited advantages for the second two categories, In the first case the system converges quicker with modularization and is seen to lead to simpler solutions, For the second case the problem is not significantly simplified through flat decomposition of the input space, although convergence is still quicker.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 21 条
[1]  
BEYER U, 1993, 766 GES MATH DAT VER
[2]  
BEYER U, 797 GES MATH DAT VER
[3]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58
[4]   NEURAL NETWORK ENSEMBLES [J].
HANSEN, LK ;
SALAMON, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) :993-1001
[5]  
HECHTNIELSEN R, 1989, 1ST P INT JOINT C NE
[6]  
HINTON GE, 1986, 8TH P ANN C COGN SCI
[7]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[8]  
HUBRIGSCHAUMBUR.S, 1992, THESIS BONN U GERMAN
[9]  
JOE K, 1990, CONCURRENCY-PRACT EX, V2, P79
[10]  
KORKOVA V, 1992, NEURAL NETWORKS, V5, P501