Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems

被引:160
作者
Elbir, Ahmet M. [1 ]
Papazafeiropoulos, Anastasios [2 ,3 ]
Kourtessis, Pandelis [2 ]
Chatzinotas, Symeon [3 ]
机构
[1] Duzce Univ, Dept Elect Engn, TR-81620 Duzce, Turkey
[2] Univ Hertfordshire, CIS Res Grp, Hatfield AL10 9EU, Herts, England
[3] Univ Luxembourg, SnT, L-4365 Luxembourg, Luxembourg
关键词
Channel estimation; MIMO communication; Complexity theory; Training; Machine learning; Surface waves; Array signal processing; Deep learning; channel estimation; large intelligent surfaces; massive MIMO; ANTENNA SELECTION; DESIGN;
D O I
10.1109/LWC.2020.2993699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents the first work introducing a deep learning (DL) framework for channel estimation in large intelligent surface (LIS) assisted massive MIMO (multiple-input multiple-output) systems. A twin convolutional neural network (CNN) architecture is designed and it is fed with the received pilot signals to estimate both direct and cascaded channels. In a multi-user scenario, each user has access to the CNN to estimate its own channel. The performance of the proposed DL approach is evaluated and compared with state-of-the-art DL-based techniques and its superior performance is demonstrated.
引用
收藏
页码:1447 / 1451
页数:5
相关论文
共 20 条
  • [1] What Will 5G Be?
    Andrews, Jeffrey G.
    Buzzi, Stefano
    Choi, Wan
    Hanly, Stephen V.
    Lozano, Angel
    Soong, Anthony C. K.
    Zhang, Jianzhong Charlie
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) : 1065 - 1082
  • [2] Chang KH, 2008, IEEE RADIO WIRELESS, P663
  • [3] Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    Gaspar, Ivan Simoes
    NaderiAlizadeh, Navid
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2019, 13 (05) : 989 - 1000
  • [4] Spatially Sparse Precoding in Millimeter Wave MIMO Systems
    El Ayach, Omar
    Rajagopal, Sridhar
    Abu-Surra, Shadi
    Pi, Zhouyue
    Heath, Robert W., Jr.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) : 1499 - 1513
  • [5] Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning Networks
    Elbir, Ahmet M.
    Mishra, Kumar Vijay
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 1677 - 1688
  • [6] Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach
    Elbir, Ahmet M.
    Papazafeiropoulos, Anastasios K.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) : 552 - 563
  • [7] CNN-Based Precoder and Combiner Design in mmWave MIMO Systems
    Elbir, Ahmet M.
    [J]. IEEE COMMUNICATIONS LETTERS, 2019, 23 (07) : 1240 - 1243
  • [8] Cognitive radar antenna selection via deep learning
    Elbir, Ahmet M.
    Mishra, Kumar Vijay
    Eldar, Yonina C.
    [J]. IET RADAR SONAR AND NAVIGATION, 2019, 13 (06) : 871 - 880
  • [9] Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO
    He, Zhen-Qing
    Yuan, Xiaojun
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) : 210 - 214
  • [10] Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication
    Huang, Chongwen
    Zappone, Alessio
    Alexandropoulos, George C.
    Debbah, Merouane
    Yuen, Chau
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) : 4157 - 4170