Critical Keller-Segel meets Burgers on S1: large-time smooth solutions

被引:30
作者
Burczak, Jan [1 ,2 ]
Granero-Belinchon, Rafael [3 ]
机构
[1] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Univ Oxford, Math Inst, OxPDE, Oxford, England
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
parabolic-elliptic Keller-Segel; critical fractional diffusion; large-time regularity; asymptotics; RADIALLY SYMMETRIC-SOLUTIONS; QUASI-GEOSTROPHIC EQUATION; GLOBAL WELL-POSEDNESS; AGGREGATION EQUATION; CHEMOTAXIS MODEL; NONLOCAL FLUX; FRACTIONAL DISSIPATION; MOVEMENT PATTERNS; SINGULARITIES; DIFFUSION;
D O I
10.1088/0951-7715/29/12/3810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that solutions to the parabolic-elliptic Keller-Segel system on S-1 with critical fractional diffusion (-Delta)(1/2) remain smooth for any initial data and any positive time. This disproves, at least in the periodic setting, the large-data-blowup conjecture by Bournaveas and Calvez [15]. As a tool, we show smoothness of solutions to a modified critical Burgers equation via a generalization of the ingenious method of moduli of continuity by Kiselev, Nazarov and Shterenberg [35] over a setting where the considered equation has no scaling. This auxiliary result may be interesting by itself. Finally, we study the asymptotic behavior of global solutions corresponding to small initial data, improving the existing results.
引用
收藏
页码:3810 / 3836
页数:27
相关论文
共 44 条
[1]   An approximate treatment of gravitational collapse [J].
Ascasibar, Yago ;
Granero-Belinchon, Rafael ;
Manuel Moreno, Jose .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 262 :71-82
[2]   Scale-free dynamics in the movement patterns of jackals [J].
Atkinson, RPD ;
Rhodes, CJ ;
Macdonald, DW ;
Anderson, RM .
OIKOS, 2002, 98 (01) :134-140
[3]   Global existence for some transport equations with nonlocal velocity [J].
Bae, Hantaek ;
Granero-Belinchon, Rafael .
ADVANCES IN MATHEMATICS, 2015, 269 :197-219
[4]   Helical Levy walks:: Adjusting searching statistics to resource availability in microzooplankton [J].
Bartumeus, F ;
Peters, F ;
Pueyo, S ;
Marrasé, C ;
Catalan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12771-12775
[5]  
Biler P, 2006, TOPOL METHOD NONL AN, V27, P133
[6]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[7]  
Biler P., 1994, Colloq. Math, V66, P319, DOI DOI 10.4064/CM-66-2-319-334
[8]  
Biler P., 1995, Appl. Math., V23, P179
[9]  
Biler P, 2016, DISCRETE CO IN PRESS
[10]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583