Classification Of MRI Brain Tumor and Mammogram Images Using Learning Vector Quantization Neural Network

被引:0
|
作者
Sonavane, Ravindra [1 ]
Sonar, Poonam [1 ]
Sutar, Surendra [1 ]
机构
[1] Rajiv Gandhi Inst Technol, Dept Elect & Telecommun, Bombay, Maharashtra, India
来源
2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS) | 2017年
关键词
ADF; Brain MRI; DDSM database; GLCM; LVQ; tumor;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A proper and accurate classification technique with detection of brain tumor has been presented and proposed. The system uses neural network based approach for brain and breast image classification. Now a day's Magnetic resonance imaging (MRI technique is used for early detection of any abnormal changes in tissues and organs. The projected method is evaluated on two distinct databases i.e. Clinical database is database of brain MRI and one more Standard Digital Database for Screening Mammography (DDSM). The proposed system consists of Preprocessing using image normalization, morphological operations using erosion, dilation and Anisotropic Diffusion Filter (ADF), Extraction of texture feature using gray level co-occurrence matrix (GLCM) and classification into normal and abnormal using machine learning algorithm and quantization techniques i.e. LVQ. The proposed system achieved the accuracy of 68.85% for DDSM mammography database and 79.35% on clinical brain MRI database
引用
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
  • [1] Brain Tumor Classification of MRI Images Using Deep Convolutional Neural Network
    Kuraparthi, Swaraja
    Reddy, Madhavi K.
    Sujatha, C. N.
    Valiveti, Himabindu
    Duggineni, Chaitanya
    Kollati, Meenakshi
    Kora, Padmavathi
    Sravan, V
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1171 - 1179
  • [2] Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
    Chelghoum, Rayene
    Ikhlef, Ameur
    Hameurlaine, Amina
    Jacquir, Sabir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2020, PT I, 2020, 583 : 189 - 200
  • [3] Classification of Tea Samples using Learning Vector Quantization Neural Network
    Damarla, Seshu
    Kundu, Madhusree
    PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 99 - 103
  • [4] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [5] Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network
    Liu, Tuo
    Chen, Changshui
    Shi, Xingzhe
    Liu, Chengyong
    LASER PHYSICS, 2016, 26 (05)
  • [6] Brain Tumor Classification Using MRI Images and Convolutional Neural Networks
    Hafeez, Muhammad Adeel
    Kayasandik, Cihan Bilge
    Dogan, Merve Yusra
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [7] Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
    Gupta, Isha
    Singh, Swati
    Gupta, Sheifali
    Nayak, Soumya Ranjan
    CURRENT MEDICAL IMAGING, 2023, 20
  • [8] A deep learning approach for brain tumor classification using MRI images*
    Aamir, Muhammad
    Rahman, Ziaur
    Dayo, Zaheer Ahmed
    Abro, Waheed Ahmed
    Uddin, M. Irfan
    Khan, Inayat
    Imran, Ali Shariq
    Ali, Zafar
    Ishfaq, Muhammad
    Guan, Yurong
    Hu, Zhihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [9] Brain Tumor Detection using MRI Images and Convolutional Neural Network
    Lamrani, Driss
    Cherradi, Bouchaib
    El Gannour, Oussama
    Bouqentar, Mohammed Amine
    Bahatti, Lhoussain
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 452 - 460
  • [10] Multi-class brain tumor classification system in MRI images using cascades neural network
    Jayachandran, A.
    Anisha, N.
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (04)