ON FUNDAMENTAL GROUPS OF TENSOR PRODUCT II1 FACTORS

被引:8
作者
Isono, Yusuke [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
functional analysis; von Neumann algebras; fundamental groups for II1 factors; W-RIGID GROUPS; EQUIVALENCE-RELATIONS; MALLEABLE ACTIONS; PRIME FACTORIZATION; NEUMANN; EXACTNESS; ALGEBRAS; INFINITY;
D O I
10.1017/S1474748018000336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a II1 factor and let F(M) denote the fundamental group of M. In this article, we study the following property of M : for any II1 factor B, we have F(M circle times B) = F(M)F(B). We prove that for any subgroup G <= R+* which is realized as a fundamental group of a II1 factor, there exists a II1 factor M which satisfies this property and whose fundamental group is G. Using this, we deduce that if G; H <= R+* are realized as fundamental groups of II1 factors, then so are groups G . H and G boolean AND H
引用
收藏
页码:1121 / 1139
页数:19
相关论文
共 37 条
[21]  
Ozawa N, 2006, INT MATH RES NOTICES, V2006
[22]   On a class of II1 factors with at most one Cartan subalgebra [J].
Ozawa, Narutaka ;
Popa, Sorin .
ANNALS OF MATHEMATICS, 2010, 172 (01) :713-749
[23]   An example of a solid von Neumann algebra [J].
Ozawa, Narutaka .
HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (03) :557-561
[24]   L2-rigidity in von Neumann algebras [J].
Peterson, Jesse .
INVENTIONES MATHEMATICAE, 2009, 175 (02) :417-433
[25]  
Popa S, 2008, J AM MATH SOC, V21, P981
[26]   On a class of type II1 factors with Betti numbers invariants [J].
Popa, Sorin .
ANNALS OF MATHEMATICS, 2006, 163 (03) :809-899
[27]   Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, II [J].
Popa, Sorin .
INVENTIONES MATHEMATICAE, 2006, 165 (02) :409-451
[28]   Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, i [J].
Popa S. .
Inventiones mathematicae, 2006, 165 (2) :369-408
[29]   Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups [J].
Popa, Sorin ;
Vaes, Stefaan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 694 :215-239
[30]  
Popa S, 2010, J AM MATH SOC, V23, P383