Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries

被引:168
作者
Yao, Koffi P. C. [1 ]
Okasinski, John S. [2 ]
Kalaga, Kaushik [1 ]
Almer, Jonathan D. [2 ]
Abraham, Daniel P. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
capacity quantification; electrochemistry; graphite; silicon; X-ray diffraction; PERFORMANCE; ANODES; CELLS; INTERCALATION; NANOPARTICLES; CARBONATE; MECHANISM; BINDER; LIFE; XRD;
D O I
10.1002/aenm.201803380
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all-Gr electrodes used in conventional lithium-ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X-ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li+). In the 0.2-0.01 V range, the relative lithiation of Si and Gr is approximate to 58% and 42%, respectively. During delithiation, Li+ ion extraction occurs preferentially from Gr in the 0.01-0.23 V range and from Si in the 0.23-1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.
引用
收藏
页数:7
相关论文
共 34 条
[1]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[2]   Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes [J].
Bareno, Javier ;
Shkrob, Ilya A. ;
Gilbert, James A. ;
Klett, Matilda ;
Abraham, Daniel P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (38) :20640-20649
[3]   Lithium reactions with intermetallic-compound electrodes [J].
Benedek, R ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :406-411
[4]   Operando X-ray diffraction during battery cycling at elevated temperatures: A quantitative analysis of lithium-graphite intercalation compounds [J].
Canas, Natalia Andrea ;
Einsiedel, Philipp ;
Freitag, Oliver Thomas ;
Heim, Christopher ;
Steinhauer, Miriam ;
Park, Dong-Won ;
Friedrich, Kaspar Andreas .
CARBON, 2017, 116 :255-263
[5]   Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation [J].
Cao Cuong Nguyen ;
Yoon, Taeho ;
Seo, Daniel M. ;
Guduru, Pradeep ;
Lucht, Brett L. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) :12211-12220
[6]   Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries [J].
Cao, Peng-Fei ;
Naguib, Michael ;
Du, Zhijia ;
Stacy, Eric ;
Li, Bingrui ;
Hong, Tao ;
Xing, Kunyue ;
Voylov, Dmitry N. ;
Li, Jianlin ;
Wood, David L., III ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3470-3478
[7]   Silicon nanowire anode: Improved battery life with capacity-limited cycling [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Michael A. ;
Kohl, Paul A. .
JOURNAL OF POWER SOURCES, 2012, 205 :433-438
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Mimicking an Atomically Thin "Vacuum Spacer" to Measure the Hamaker Constant between Graphene Oxide and Silica [J].
Chu, Liangyong ;
Korobko, Alexander V. ;
Cao, Anping ;
Sachdeva, Sumit ;
Liu, Zhen ;
de Smet, Louis C. P. M. ;
Sudholter, Ernst J. R. ;
Picken, Stephen J. ;
Besseling, Nicolaas A. M. .
ADVANCED MATERIALS INTERFACES, 2017, 4 (05)
[10]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177