positive definiteness;
spectral radius;
symmetric nonnegative tensors;
Z-tensors;
SHIFTED POWER METHOD;
LARGEST EIGENVALUE;
CONVERGENT ALGORITHM;
D O I:
10.1002/nla.2134
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we propose a fast algorithm for computing the spectral radii of symmetric nonnegative tensors. In particular, by this proposed algorithm, we are able to obtain the spectral radii of weakly reducible symmetric nonnegative tensors without requiring the partition of the tensors. As we know, it is very costly to determine the partition for large-sized weakly reducible tensors. Numerical results are reported to show that the proposed algorithm is efficient and also able to compute the spectral radii of large-sized tensors. As an application, we present an algorithm for testing the positive definiteness of Z-tensors. By this algorithm, it is guaranteed to determine the positive definiteness for any Z-tensor.
机构:
Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R ChinaPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Chang, Kung-Ching
Pearson, Kelly J.
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R China
Murray State Univ, Dept Math & Stat, Murray, KY 42071 USAPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Pearson, Kelly J.
Zhang, Tan
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R China
Murray State Univ, Dept Math & Stat, Murray, KY 42071 USAPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Hu ShengLong
Huang ZhengHai
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Huang ZhengHai
Qi LiQun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
机构:
Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R ChinaPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Chang, Kung-Ching
Pearson, Kelly J.
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R China
Murray State Univ, Dept Math & Stat, Murray, KY 42071 USAPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
Pearson, Kelly J.
Zhang, Tan
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 30091, Peoples R China
Murray State Univ, Dept Math & Stat, Murray, KY 42071 USAPeking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Hu ShengLong
Huang ZhengHai
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Huang ZhengHai
Qi LiQun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China