Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis

被引:28
作者
Avila, Gonzalo Marcelo Ramirez [1 ,2 ,3 ]
Gapelyuk, Andrej [1 ]
Marwan, Norbert [2 ]
Walther, Thomas [4 ]
Stepan, Holger [5 ]
Kurths, Juergen [1 ,2 ,6 ]
Wessel, Niels [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany
[2] Potsdam Inst Klimafolgenforsch, Potsdam, Germany
[3] Univ Mayor San Andres, Inst Invest Fis, La Paz, Bolivia
[4] Univ Hull, Hull York Med Sch, Ctr Cardiovasc & Metab Res, Kingston Upon Hull HU6 7RX, N Humberside, England
[5] Univ Leipzig, Dept Obstet & Gynecol, D-04109 Leipzig, Germany
[6] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen, Scotland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 371卷 / 1997期
关键词
time-series analysis; cardiac dynamics; networks and genealogical trees; hemodynamics; blood flow in cardiovascular system; coupling analysis; PREDICTING PREECLAMPSIA; HEART-RATE; COMPLEX NETWORKS; EARLY-PREGNANCY; BLOOD-PRESSURE; VARIABILITY; OSCILLATIONS; THRESHOLD; CAUSALITY; SYSTEM;
D O I
10.1098/rsta.2011.0623
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyse cardiovascular time series with the aim of performing early prediction of preeclampsia (PE), a pregnancy-specific disorder causing maternal and foetal morbidity and mortality. The analysis is made using a novel approach, namely the epsilon-recurrence networks applied to a phase space constructed by means of the time series of the variabilities of the heart rate and the blood pressure (systolic and diastolic). All the possible coupling structures among these variables are considered for the analysis. Network measures such as average path length, mean coreness, global clustering coefficient and scale-local transitivity dimension are computed and constitute the parameters for the subsequent quadratic discriminant analysis. This allows us to predict PE with a sensitivity of 91.7 per cent and a specificity of 68.1 per cent, thus validating the use of this method for classifying healthy and preeclamptic patients.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Heart rate variability: a review [J].
Acharya, U. Rajendra ;
Joseph, K. Paul ;
Kannathal, N. ;
Lim, Choo Min ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) :1031-1051
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   STATISTICS NOTES - DIAGNOSTIC-TESTS-1 - SENSITIVITY AND SPECIFICITY .3. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 308 (6943) :1552-1552
[4]   DIAGNOSTIC-TESTS-2 - PREDICTIVE VALUES .4. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 309 (6947) :102-102
[5]   Complex networks - Augmenting the framework for the study of complex systems [J].
Amaral, LAN ;
Ottino, JM .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :147-162
[6]  
[Anonymous], AM J OBSTET GYNECOL
[7]  
[Anonymous], DOPPLER ULTRASOUND O
[8]  
[Anonymous], PREPRINT SERIES U LJ
[9]   Approaching the Threshold for Predicting Preeclampsia Monitoring Angiogenic Balance During Pregnancy [J].
Banek, Christopher T. ;
Gilbert, Jeffrey S. .
HYPERTENSION, 2011, 58 (05) :774-775
[10]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308