Stochastic calculus for convoluted Levy processes

被引:20
作者
Bender, Christian [1 ]
Marquardt, Tina [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Stochast, D-38106 Braunschweig, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
关键词
convoluted Levy process; fractional Levy process; Ito formula; Skorokhod integration;
D O I
10.3150/07-BEJ115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a stochastic calculus for processes which are built by convoluting a pure jump, zero expectation Levy process with a Volterra-type kernel. This class of processes contains, for example, fractional Levy processes as studied by Marquardt [Bernoulli 12 (2006) 1090-1126.] The integral which we introduce is a Skorokhod integral. Nonetheless, we avoid the technicalities from Malliavin calculus and white noise analysis and give an elementary definition based on expectations under change of measure. As a main result. we derive an Ito formula which separates the different contributions from the memory due to the convolution and from the jumps.
引用
收藏
页码:499 / 518
页数:20
相关论文
共 18 条
[1]   Non-Gaussian infinite dimensional analysis [J].
Albeverio, S ;
Daletsky, YL ;
Kondratiev, YG ;
Streit, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (02) :311-350
[2]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[3]   An S-transform approach to integration with respect to a fractional Brownian motion [J].
Bender, C .
BERNOULLI, 2003, 9 (06) :955-983
[4]   An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].
Bender, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) :81-106
[5]   An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion [J].
Biagini, F ;
Oksendal, B ;
Sulem, A ;
Wallner, N .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2041) :347-372
[6]  
Cont R, 2004, FINANCIAL MODELLING
[7]   Anticipative calculus with respect to filtered Poisson processes [J].
Decreusefond, L ;
Savy, N .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (03) :343-372
[8]  
Jacod J, 1987, Limit Theorems for Stochastic Processes
[9]  
KUBO I, 1983, LECT NOTES CONTROL I, V49, P155
[10]  
Lee Y.-J., 2004, B I MATH ACAD SIN, V32, P71