Positivity and stability of positive singular Markovian jump time-delay systems with partially unknown transition rates

被引:34
|
作者
Zhang, Di [1 ]
Zhang, Qingling [1 ]
Du, Baozhu [2 ]
机构
[1] Northeastern Univ, Inst Syst Sci, Shenyang 110819, Liaoning, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2017年 / 354卷 / 02期
基金
中国国家自然科学基金;
关键词
LINEAR-SYSTEMS; H-INFINITY; EXPONENTIAL STABILITY; STOCHASTIC STABILITY; VARYING DELAYS; STABILIZATION; PROBABILITIES;
D O I
10.1016/j.jfranklin.2016.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with positivity and stochastic stability of a class of positive singular Markovian jump time-delay systems with partially unknown transition rates. First, a necessary and sufficient condition is established to check the positivity of singular Markovian jump time-delay systems. By constructing an appropriate linear co-positive Lyapunov ICrasovskii function, a sufficient condition of stochastic stability for positive singular Markovian jump time-delay systems is established, which can be solved in terms of linear programming. Based on the results obtained, we give a necessary and sufficient condition of stability for normal positive Markovian jump systems and build some relationships with some existing results. Finally, three numerical examples are used to demonstrate the effectiveness of the proposed results. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:627 / 649
页数:23
相关论文
共 50 条
  • [1] Stability and Stabilization for Markovian Jump Time-Delay Systems With Partially Unknown Transition Rates
    Du, Baozhu
    Lam, James
    Zou, Yun
    Shu, Zhan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (02) : 341 - 351
  • [2] Stability Analysis of Markovian Jump Time-Delay Systems with Partially Unknown Transition Rates
    Du, Baozhu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 952 - 956
  • [3] Stability Analysis of Markovian Jump Time-Delay Systems with Partially Unknown Transition Rates
    Du, Baozhu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4332 - 4336
  • [4] Synthesis of Markovian Jump Time-Delay Systems with Partially Unknown Transition Rates
    Du, Baozhu
    Lam, James
    Zou, Yun
    Shu, Zhan
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 2792 - 2797
  • [5] Stochastic admissibility for a class of nonlinear singular Markovian jump systems with time-delay and partially unknown transition probabilities
    Long, Shaohua
    Zhong, Shouming
    ADVANCES IN COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING, 2012, 235 : 254 - 258
  • [6] H∞ fuzzy control for nonlinear time-delay singular Markovian jump systems with partly unknown transition rates
    Li, Li
    Zhang, Qingling
    Zhu, Baoyan
    FUZZY SETS AND SYSTEMS, 2014, 254 : 106 - 125
  • [7] On Exponential Stability of Neutral Delay Markovian Jump Systems with Nonlinear Perturbations and Partially Unknown Transition Rates
    Liu, Xinghua
    Xi, Hongsheng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2014, 12 (01) : 1 - 11
  • [8] On exponential stability of neutral delay Markovian jump systems with nonlinear perturbations and partially unknown transition rates
    Xinghua Liu
    Hongsheng Xi
    International Journal of Control, Automation and Systems, 2014, 12 : 1 - 11
  • [9] Stability Analysis for Neutral Delay Markovian Jump Systems with Nonlinear Perturbations and Partially Unknown Transition Rates
    Liu, Xinghua
    Xi, Hongsheng
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [10] Control of Singular Markovian Jump Systems with Time-Delay
    Yan QiuLin
    Su XiaoJie
    Song Yong-Duan
    Cao MeiLing
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1555 - 1558